
Speciation across the Tree of Life

Tania Hernández-Hernández1,2†, Elizabeth C. Miller1†, Cristian Román-Palacios1† and
John J. Wiens1†*
1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.
2Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato,

Guanajuato, Mexico

ABSTRACT

Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have
been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups
across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa,
including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric spe-
ciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological
speciation), and on what niche axes do species diverge in each group?What are the reproductive isolating barriers in each
group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most fre-
quent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect
hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both
animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also wide-
spread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some
marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all
groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve
species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more
widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strik-
ingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists,
with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns
in speciation across all organisms.

Key words: animals, bacteria, co-speciation, ecological speciation, fungi, plants, protists, speciation

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II. Speciation in prokaryotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

(1) What are bacterial species and speciation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(2) Bacterial species richness and the Pie of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(3) Geographic modes in bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
(4) Ecological divergence in bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(5) Isolating barriers in bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(6) Host-mediated speciation in bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III. Speciation in protists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(1) Geographic modes in protists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(2) Ecological divergence in protists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(3) Reproductive isolating barriers in protists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
(4) Host-mediated speciation in symbiotic protists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

* Address for correspondence (Tel: +520 621 0337; E-mail: wiensj@email.arizona.edu)
†Order of authorship is alphabetical.

Biological Reviews (2021) 000–000 © 2021 Cambridge Philosophical Society.

Biol. Rev. (2021), pp. 000–000. 1
doi: 10.1111/brv.12698

https://orcid.org/0000-0003-4243-1127
mailto:wiensj@email.arizona.edu


IV. Speciation in fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
(1) Geographic modes in fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
(2) Ecological divergence in fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
(3) Reproductive isolating barriers in fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(4) Host-mediated speciation in symbiotic fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

V. Speciation in plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(1) Geographic modes in plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(2) Ecological divergence in plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
(3) Reproductive isolating barriers in plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

VI. Speciation in animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(1) Molluscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

(a) Geographic modes in molluscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(b) Ecological divergence in molluscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
(c) Reproductive isolating barriers in molluscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

(2) Insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
(a) Geographic modes in insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(b) Ecological divergence in insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(c) Reproductive isolating barriers in insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

(3) Marine invertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(a) Geographic modes in marine invertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(b) Ecological divergence in marine invertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(c) Reproductive isolating barriers in marine invertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

(4) Vertebrate speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
(a) Geographic modes in vertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
(b) Ecological divergence in vertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
(c) Reproductive isolating barriers in vertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

VII. Major generalizations and patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
(1) Co-speciation and host-switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
(2) Geographic modes of speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
(3) Ecological divergence and speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(4) Reproductive isolating barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
(5) Rates of diversification and speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

VIII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IX. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
X. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
XI. Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

I. INTRODUCTION

‘How do new species originate?’ is a fundamental question in
biology. Speciation is the process that ultimately generates
the diversity of life. Given its importance, there have been
many excellent syntheses on speciation, including outstand-
ing books (e.g. Coyne & Orr, 2004; Nosil, 2012) and review
papers (e.g. Schluter, 2009; Seehausen et al., 2014).

Nevertheless, we argue that there is an important gap in
the empirical literature on speciation, relating to how diverse
organisms are treated. Synthetic papers on speciation gener-
ally fall into two main classes. First, there are synthetic works
focused on particular topics in speciation, including ecology
(Schluter, 2009; Nosil, 2012), hybridization (Abbott
et al., 2013), and genomics (Seehausen et al., 2014). These syn-
theses often review papers primarily on animals, or animals
and plants. Second there are synthetic works on specific
groups of organisms, such as plants (Rieseberg &
Willis, 2007; Givnish, 2010), fungi (Giraud et al., 2008), birds
(Price, 2008), and insects (Mullen & Shaw, 2014). We believe

that an unfilled gap is to compare speciation explicitly across
major groups. For example, is speciation in plants different
from that in animals? Is speciation in fungi different from that
in plants and animals? What about bacteria and protists?
More broadly, can we make generalizations about speciation
that are truly general, and apply to all organisms?
Here, we make an initial attempt to fill this gap. In the sec-

tions that follow, we first focus separately on speciation in
each major group of organisms (i.e. bacteria, protists, fungi,
plants, and animals). Following these taxonomic sections,
we then present our major conclusions derived from our
comparisons across these groups. Given the vast literature
in animals (and because animals include most described liv-
ing species), we focus on four sets of animals: (i) molluscs, (ii)
insects, (iii) marine invertebrates, and (iv) vertebrates. These
represent major groups in the three numerically dominant
phyla (Mollusca, Arthropoda, Chordata), and a non-
monophyletic assemblage that incorporates most other
animal phyla (marine invertebrates). Protists are also not
monophyletic, but we lump them for convenience here
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(as do other authors; e.g. Pawlowski et al., 2012). Similarly, we
do not have a dedicated section on archaeans, but much
research on prokaryote speciation focuses on bacteria.

We emphasize three broad questions about speciation for
each group. (i) Is allopatric speciation predominant across the
Tree of Life? (ii) How prevalent is ecological divergence
among sister species (a necessary requirement for ecological
speciation), and on what niche axes do sister species diverge
in each group? (iii) What are the causes of reproductive isola-
tion among species in each group? For groups in which spe-
cies often live in association with other organisms (e.g.
parasites, endosymbiotic mutualists, and commensals), we
also address the relative frequencies of co-speciation and
host-switching as speciation mechanisms (see below for defi-
nitions). In the final section, we also briefly compare rates
of diversification (speciation minus extinction) across groups.
To help address these questions, we conducted a systematic
search of the literature on each group (see online Supporting
Information, Appendix S1, for details of searches for each
group).

Why these three main questions? Geographic modes have
long been an important topic in speciation research. Major
debates focus on whether allopatric speciation is predominant
(e.g. Coyne &Orr, 2004), and whether sympatric speciation is
possible and if so how frequent (e.g. Berlocher & Feder, 2002;
Bolnick & Fitzpatrick, 2007). We note that some researchers
have advocated classifying speciation as being with or without
gene flow, and ignoring geographic modes (e.g. Fitzpatrick,
Fordyce & Gavrilets, 2008, 2009). Nevertheless, estimating
the frequency of geographic modes remains an active area
of study (e.g. Skeels & Cardillo, 2019), and a simple dichot-
omy between speciation with versus without gene flow also
has downsides. For example, this dichotomy ignores the spe-
cial difficulty of sympatric speciation relative to other geo-
graphic modes (e.g. Coyne & Orr, 2004) and that allopatry
in particular may require a failure to adapt to the habitat sep-
arating incipient species rather than adaptation to divergent
habitats (e.g. Wiens, 2004; Hua & Wiens, 2013). Moreover,
estimating gene flow between sister species (especially at the
time of their splitting) is not necessarily any easier than esti-
mating their geographic overlap, and often requires data that
are simply not available for many sister-species pairs. Further-
more, categorizing speciation events as with or without gene
flow may also require dividing a continuum into discrete cat-
egories (see table 1 in Harrison, 2012), which this approach
was intended to avoid. Ecological speciation has become a
major topic in speciation research (e.g. Schluter, 2009;
Nosil, 2012), so its inclusion needs little justification. Similarly,
reproductive isolating barriers are fundamental to speciation
(e.g. Coyne & Orr, 2004). However, we acknowledge that
the most straightforward comparisons to make across groups
involve geographic modes, frequencies of co-speciation and
host-switching, and diversification rates, whereas information
on reproductive isolating barriers is more heterogeneous
across groups.

We infer geographic modes based primarily on geo-
graphic overlap of sister species. This approach has been

used widely for decades (e.g. Lynch, 1989; Barraclough &
Vogler, 2000; Phillimore et al., 2008; Jezkova & Wiens,
2018). Many studies have also analysed correlations between
ages of species pairs and their extent of geographic range
overlap (age–range correlations, ARC), to better infer over-
lap at the time of splitting (e.g. Barraclough & Vogler,
2000). Although this approach has been controversial (e.g.
Losos & Glor, 2003), recent simulations suggest that geo-
graphic modes are detectable from extant species distribu-
tions, even if ranges have shifted over time (Skeels &
Cardillo, 2019). Here, we emphasize range overlap of sister
species, which is essential for inferring geographic modes
(Skeels & Cardillo, 2019). We do not assign sister species with
partial range overlap to a geographic mode. Instead, we pri-
marily focus on the number of species pairs that are
completely non-overlapping in their distribution (allopatric)
and pairs in which one species’ range completely overlaps
another (sympatric). We acknowledge that one would want
additional evidence, beyond range overlap, to infer sympat-
ric speciation strongly (e.g. Coyne & Orr, 2004; Bolnick &
Fitzpatrick, 2007). We also note that even inferences of allop-
atry from simple range overlaps are not guaranteed to be cor-
rect, but this caveat is true for most other aspects of
evolutionary inference (e.g. phylogeny, divergence times).
Moreover, the idea that most presently allopatric species
actually arose in sympatry or parapatry seems particularly
unlikely.

Along similar lines, we primarily discuss ecological diver-
gence among sister species, a necessary requirement for
establishing that these species originated through ecological
speciation. Of course, additional information would be nec-
essary to establish that ecological divergence was actually
the main driver of speciation in a given case. Importantly,
species could diverge ecologically after having originated
through other processes, such as mutation-order speciation
(Schluter, 2009). Additional evidence that is helpful in linking
ecological divergence (in a given variable) to speciation
includes: (i) demonstrating that ecological divergence in that
variable is involved in reproductive isolation between the
species; and (ii) evidence that increased rates of divergence
in that variable among species are associated with increased
rates of speciation and/or diversification (in that clade). Fur-
thermore, finding support for ecological speciation does not
necessarily rule out a role for other processes (e.g. sexual
selection and ecological divergence may work together to iso-
late species; Maan & Seehausen, 2011). Finally, we note that
finding that sister species did not diverge ecologically in the
traits analysed does not necessarily rule out ecological speci-
ation either, since divergence is only assessed in the ecological
traits that were considered. Nevertheless, we assume that
researchers in each group of organisms analysed the ecolog-
ical traits that were most relevant to speciation in the species
that they studied, given their expertise.

For species that live in close association with another spe-
cies (e.g. parasites, endosymbiotic mutualists, and commen-
sals), there are two main mechanisms hypothesized for their
speciation: co-speciation and host-switching (e.g. Ricklefs,
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Fallon & Bermingham, 2004). In co-speciation, the species
splits primarily because its host species does. There may be
little ecological divergence for the symbiote in this case. By
contrast, under host-switching, the individuals that colonize
a new host may be isolated by their occurrence in this new
host species.

Finally, we begin our review with a discussion about spe-
cies concepts in bacteria. We do not present a similar review
for every other group of organisms. We contrast prokaryotic
and eukaryotic species because most eukaryotic species have
sexual reproduction, whereas prokaryotic species do not, and
because some authors have questioned whether bacterial
species (and speciation) even exist. We think that the study
of speciation generally focuses on reproductive isolation
between species (e.g. Coyne & Orr, 2004). Importantly, this
does not require universal agreement about species concepts,
methods of species delimitation, or about what aspects of
reproductive isolation are most important to speciation (e.g.
geography versus ecology versus behaviour versus genetics).
We also include a section on the species richness of bacteria
(and other groups), since identifying the most species-rich
group of organisms is potentially relevant to which speciation
processes are most frequent across living species.

II. SPECIATION IN PROKARYOTES

(1) What are bacterial species and speciation?

A fundamental question in considering speciation across the
Tree of Life is whether speciation in prokaryotes
(Eubacteria, Archaea) is even comparable to that in eukary-
otes. A more basic question is whether bacterial species and
speciation actually exist, or whether they are simply a ‘myth’
(e.g. Lawrence & Retchless, 2010).

Prokaryotes do not have gene exchange among individuals
associated with reproduction, as in many eukaryotes (Cohan,
2001). Hence, they are generally considered asexual. Thus,
gene exchange among conspecific individuals may not seem
to be an appropriate basis for species and speciation in
prokaryotes.

Nevertheless, there can be gene exchange within and
among bacterial species. This can include homologous
recombination between closely related individuals and hori-
zontal gene transfer (the latter can occur between distantly
related species; Ochman, Lawrence &Groisman, 2000). Fra-
ser, Hanage & Spratt (2007) used simulations to address how
recombination could drive bacterial speciation, given that
recombination seems to decrease in frequency with greater
genetic divergence between individuals. They concluded that
high rates of recombination (relative to mutation) can lead to
bacterial species that behave like sexual species, with recom-
bination acting as a cohesive force. Bobay & Ochman (2017)
argued that because of widespread recombination in bacteria
(present in at least half of the surveyed species), bacterial spe-
cies are generally comparable to those in other organisms.

Shapiro et al. (2012) suggested that bacterial speciation
may occur when an ecologically homogeneous, recombining
population acquires genes that allow use of a novel resource
(e.g. host or habitat). Resource-specific genes then sweep
through these populations with different ecologies. Finally,
the most recent recombination events tend to occur more fre-
quently within rather than between these two sets of popula-
tions, leading to bacterial species with similarities to
eukaryotic species (i.e. with conspecific individuals sharing
similar ecologies and exchanging genes more frequently than
heterospecific individuals). Shapiro et al. (2012) found some
evidence for this model in marine bacteria. Polz, Alm &
Hanage (2013) proposed a similar model, with conspecific
populations that diverge ecologically and then become dis-
tinct genotypic clusters. They also emphasized gene
exchange among bacterial lineages sharing the same
environment.
Similarly, Cohan (2001) argued that across life, individuals

fall into more-or-less discrete clusters (species) on the basis of
phenotypic, ecological, and genotypic characteristics. In bac-
teria, distinct sequence clusters correspond to distinct eco-
types. These ecotypes are made cohesive by periodic
selection. Cohan (2016) argued that there is evidence for
homogenizing selection in bacterial populations over time
(Bendall et al., 2016). Other authors (e.g. Gevers et al., 2005)
have also noted that ecological divergence may be key to rec-
ognizing distinct bacterial species.
Doolittle & Papke (2006) reviewed diverse opinions on

whether bacterial species are real or not. They concluded
that sometimes bacterial species are clear and unambiguous
and sometimes not. This continuum in species distinctness
has also been noted in eukaryotes (e.g. de Queiroz, 2007).
Thus, the presence of this continuum is not unique (nor dis-
qualifying) to putative bacterial species.
Overall, we recognize that there is controversy about the

existence of bacterial species and speciation. However, we
treat them as potentially comparable to eukaryotic species
here, as have other authors broadly interested in speciation
(e.g. Coyne & Orr, 2004).

(2) Bacterial species richness and the Pie of Life

The frequency of speciation processes across living organisms
may depend heavily on which groups of organisms are the
most species rich. Following Larsen et al. (2017), we speculate
that most living species are likely to be bacteria associated
with animal hosts (especially insects, which make up the
majority of described animal species). Those authors esti-
mated the minimum number of unique bacterial species
per insect host species by examining the distribution of bacte-
rial species among closely related insect species. They found
usable data in three genera from two of the largest insect
orders (Diptera: fruit flies: Drosophila; Hymenoptera: ants:
Cephalotes and wasps: Nasonia). They focused only on closely
related insect species given that these species should share
the most bacterial species, and thus provide the most conser-
vative estimates of species-specific bacterial richness. They
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also showed that high bacterial richness and host specificity in
each insect host species were widespread across insects (e.g.
Yun et al., 2014). However, the conclusions of Larsen et al.
(2017) were recently challenged by Louca et al. (2019). This
will be addressed in detail elsewhere (Wiens, 2021). Below,
we briefly show that the calculations of Louca et al. (2019)
were demonstrably incorrect and that the overall projections
of Larsen et al. (2017) may be more likely to be correct.

Louca et al. (2019) correctly pointed out that Larsen et al.
(2017) merely estimated the number of unique bacterial spe-
cies per insect host species, rather than counting them directly.
Louca et al. (2019) then presented their own indirect estimates
of bacterial diversity, using a different approach. They did this
only for ants (Cephalotes). Moreover, Louca et al. (2019) incor-
rectly assumed that the estimates of Larsen et al. (2017) were
drawn randomly from among all 130 Cephalotes species (they
were only for seven closely related species in two clades). Louca
et al. (2019) estimated that there were only 40.1 bacterial spe-
cies in total among all 130 species of Cephalotes.

This estimate is demonstrably incorrect. The estimates of
Larsen et al. (2017) for Cephalotes were based on data from
Sanders et al. (2014). Using the standard 97% cut-off for dis-
tinct bacterial species, the data of Sanders et al. (2014) show
616 bacterial species among the 25 sampled Cephalotes.
Among these 616 species, relatively few (only 77) were shared
with the three other closely related ant genera they sampled.
Among the 539 bacterial species found only in Cephalotes,
most (369) were found in a single host species. In summary,
there are at least 616 bacterial species among only 25 sam-
pled Cephalotes species, not 40 among all 130 species.

Louca et al. (2019) then applied this underestimate for
Cephalotes to all animal species (excluding without explanation
the other insect genera analysed by Larsen et al. 2017). They
first calculated 65 million bacterial species, based on one esti-
mate of animal richness from Larsen et al. (2017; 163 million)
and an average of 100 species per animal genus. Louca et al.
(2019) then estimated only 3 million bacterial species using
an older, smaller projection of animal richness (Mora
et al., 2011).

They then reduced this estimate to only 40100 host-
associated bacterial species across all animals, by assuming
that bacterial species can be shared between any pair of ani-
mal host genera, regardless of the host’s phylogeny, habitat,
diet, or geographic range. Thus, they implicitly assumed that
(for example) a terrestrial insect herbivore endemic to
Europe could share gut endosymbionts with a deep sea fish
in the Pacific Ocean. By contrast, Sanders et al. (2014) used
data from Cephalotes ants (and three related genera) to show
that microbial biotas within insect species tend to cluster
based on host phylogeny, with microbiotas of different gen-
era being the most distinct. Indeed, among 1019 bacterial
species they sampled from these four ant genera, only 77 spe-
cies were shared between Cephalotes and any of the other
genera. Again, Louca et al. (2019) based their estimates of
host-associated microbial diversity only on Cephalotes.

Thus, we disagree with the conclusion of Louca et al. (2019)
that there are only 40100 bacterial species among >1 million

insect species. In the one group of insects they considered,
there were 1019 bacterial species among only four insect gen-
era (30 sampled species), with many bacterial species found in
a single insect host species. These results may not be atypical.
For example, a survey of 31 species of lycaenid butterflies
found a total of 1156 bacterial species among them
(Whitaker et al., 2016). Similarly, a study of 13 species of
native Hawaiian insects (including beetles, flies, and true
bugs) found 1094 bacterial species (Poff et al., 2017). An anal-
ysis of gut microbiotas from 62 diverse insect species found
2073 bacterial species (Colman, Toolson & Takacs-Vesbach,
2012). Yun et al. (2014) sampled 218 insect species among
21 insect orders, and found 9301 unique bacterial species,
with 46% found in a single sampled insect species. These
results are inconsistent with the estimate of only 40 bacterial
species per 130 insect host species by Louca et al. (2019), and
their estimate of 40100 host-associated bacterial species in
total.

Finally, re-estimates of species-specific bacterial species
for all three insect genera analysed by Larsen et al. (2017),
based on direct counts, yields a mean bacterial richness
per insect host species of 7.6 species/host (Drosophila
= 6.4; Cephalotes = 7.1; Nasonia = 9.3). This is lower than
the estimate of 10.7 made by Larsen et al. (2017), but nev-
ertheless similar. Moreover, the number of species-specific
bacteria is only a minimum estimate of overall host-
associated bacterial richness. Most importantly, plugging
this new mean value into the calculations for global biodi-
versity from Larsen et al. (2017) still supports the idea that
most species of living organisms are bacteria associated
with animal hosts, and that bacteria dominate the Pie of
Life (Wiens 2021). Specifically, Larsen et al. (2017; their
tables 1–4) projected 0.209 to 5.8 billion species on Earth,
of which 66–91% are bacteria, whereas the re-estimates
project 0.183 to 4.2 billion of which 58–88% are bacteria
(Wiens, 2021). Thus, in order to understand the most fre-
quent processes underlying speciation across life, it is cru-
cial to understand how bacteria speciate, especially those
associated with animal hosts (see Section II.6 below).

(3) Geographic modes in bacteria

There has been debate over whether allopatric speciation is
widespread in bacteria (Whitaker, 2006). A traditional view
is that all bacterial species occur everywhere, and that differ-
entiation is based primarily on environmental differences
(e.g. Baas Becking, 1934). Allopatric differentiation has been
found in some taxa, but may depend on the marker used.
The commonly used 16S ribosomal gene may evolve too
slowly to detect recent genetic divergence (Whitaker, 2006).
Whitaker (2006) reviewed studies that incorporated addi-
tional markers (with or without 16S), and found a mixture
of geographic patterns among 11 bacterial genera. Differen-
tiation based primarily on geography alone (i.e. allopatry)
was found in six genera, three of which occurred in geother-
mal hot springs, two in soil, and one in haloalkaline lakes. By
contrast, two genera showed genetic divergence among
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environments at ‘local’ scales (40–50 km), with one in soil
and another in a freshwater stream. Two species were appar-
ently globally distributed without genetic divergence (both
marine), as was one genus occurring in hot springs. Subsequent
studies have also supported allopatric speciation in prokary-
otes. For example, Reno et al. (2009) found strong evidence
for allopatric divergence among populations of Sulfolobus islandi-
cus, a thermoacidophilic archaean.Unfortunately, the available
studies did not allow for straightforward counts of range over-
lap among sister-species pairs, in contrast to most macroscopic
groups.

Overall, these studies support the idea that bacterial species
can be cosmopolitan, allopatric, or occur in nearby distinct hab-
itats. However, more studies will be needed to show robust pat-
terns in geographic modes, after accounting for potential
differences due to different habitats. Nevertheless, allopatric
speciation might occur frequently in bacteria, as in other
organisms.

(4) Ecological divergence in bacteria

Numerous authors have argued that ecological divergencemay
be an essential part of bacterial speciation (e.g. Cohan, 2001,
2002; Vos, 2011; Polz et al., 2013; Lassalle, Muller & Nesme,
2015). For example, Vos (2011) found evidence for greater eco-
logical divergence associated with greater genetic divergence in
bacteria, including both putative within-species and between-
species comparisons.This is one of the fewquantitative analyses
relating ecological divergence and speciation in bacteria.
Unfortunately, we found few studies that addressed ecological
divergence of bacterial sister-species pairs.

Case studies in free-living bacteria included divergent
clades associated with different soil types in Bacillus in
Death Valley (Connor et al., 2010). In the marine bacterial
species Vibrio cyclitrophicus, Shapiro et al. (2012) found
recently diverged populations associated with differently
sized zoo- and phyto-plankton (and other organic particles)
in sea water. Lassalle et al. (2015) reviewed case studies of
possible ecological speciation in bacteria, but in many cases
the ecological differences were somewhat unclear, and
were inferred from genomic patterns of divergence
(i.e. reverse ecology).

Similar to Shapiro et al. (2012), Retchless & Lawrence
(2012) suggested that bacterial speciation involved ecolog-
ical transitions (facilitated by horizontal gene transfer) fol-
lowed by selection on substitutions in the new
environments. These substitutions then reduce the possibil-
ity of recombination with other bacterial lineages. They
showed empirical results that offered some support for this
model. Overall, there seems to be broad agreement that
ecological divergence is generally important for bacterial
speciation (even if not ubiquitous). However, one potential
issue is that if bacterial species are defined based on ecolog-
ical divergence, then detecting speciation without ecologi-
cal divergence may be difficult (but see discussion of
allopatry in Section II.3).

(5) Isolating barriers in bacteria

Here, we briefly review isolating barriers in prokaryotes (see
also Barraclough, 2019). Overall, there may be two key
aspects of genetic isolation of prokaryotic species: separation
into distinct environments (see Section II.4), and the develop-
ment of barriers to recombination. Ecological divergence is
thought to be a major driver of speciation in bacteria. This
can drive divergent selection between lineages in different
environments (as in eukaryotic systems) and might also
restrict the lineages that engage in genetic exchange to those
occurring in the same environment (e.g. Polz et al., 2013).
Much literature on bacterial speciation has addressed how

barriers to recombination could drive bacterial speciation
(e.g. Fraser et al., 2007; Polz et al., 2013; Schmutzer &
Barraclough, 2019). Most importantly, recombination seems
to decrease in frequency with greater genetic divergence
between individuals (e.g. Falush et al., 2006; Hanage et al.,
2006). This pattern appears to be caused (at least in part)
by the protein Rec-A (recombination protein A), which initi-
ates recombination between individuals with a certain level
of sequence similarity, and the protein MutS (mutator S),
which inhibits recombination between sequences that are
too dissimilar (e.g. Vulic, Lenski & Radman, 1999). Simula-
tions suggest that reduced recombination may be important
in those clades with relatively high recombination rates
(Schmutzer & Barraclough, 2019). However, this mechanism
may not apply to prokaryotic lineages that have little or no
homologous recombination, including archaeans and many
bacterial species (e.g. Polz et al., 2013; Barraclough, 2019).
Ecological divergence may be crucial in these lineages
instead.
Other isolating barriers may also be important. For exam-

ple, bacteria can use pheromones to communicate among
individuals, which may impact their reproductive isolation
among species. Carrolo et al. (2009) found genetic divergence
between individuals with different forms of a signalling pep-
tide, suggesting reproductive isolation between them. This
may be a type of prezygotic isolating barrier.
The relative importance of different barriers in prokary-

otes remains unclear, and may depend on the clade. This is
hardly unique to prokaryotes. Yet, most prokaryote richness
may occur inside of eukaryotes, a possibility that is not
addressed in most of the literature on bacterial speciation
(e.g. Barraclough, 2019). We address this below.

(6) Host-mediated speciation in bacteria

The frequency of different speciation modes and mecha-
nisms in bacteria may ultimately depend on where most bac-
teria occur. Much literature on bacterial speciation has
implicitly assumed that bacteria are free-living (see Section
II.1). However, it is possible that most bacterial species rich-
ness is inside eukaryotes. For example, each insect species
may contain several host-specific bacterial endosymbiotes
(see Section II.2).
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In Table 1, we review the relative frequency of co-
speciation between bacteria and their hosts (see Appendix
S1 for methods used to find case studies). This review was
based on 12 studies that compared the phylogenies of bacte-
rial symbionts and hosts. Across studies, the number of con-
gruent nodes between host and bacterial trees ranged from
50 to 100% (mean = 78.9%). These results suggest that in
endosymbiotic bacteria, most speciation events may be
caused by the splitting of their host species. Although addi-
tional evidence would be useful to establish co-speciation
firmly in each case, these results are consistent with the idea
that co-speciation may be widespread. This idea is also sup-
ported by studies showing that the microbiotas of insect spe-
cies (and other organisms) are strongly related to the
phylogeny of their hosts (e.g. Colman et al., 2012; Yun et al.,
2014), especially among closely related host species
(Sanders et al., 2014).

This survey might also be biased in some ways. For exam-
ple, scientists may be more likely to compare phylogenies in
systems predisposed to show congruence (e.g. gut endosymbi-
onts). Other studies have shown more complex patterns
(Thao, Gullan & Baumann, 2002; Donovan et al., 2004;
Kikuchi, Meng & Fukatsu, 2005). Furthermore, many host
species may contain multiple bacterial clades that are not
closely related. Thus, one clade may show a pattern of con-
gruence, even though all bacteria in the gut (for example)
are not each other’s closest relatives (i.e. a single clade). This
idea is consistent with our survey, showing a combination of
co-speciation and host-switching in most groups, but with co-
speciation prevalent among the most closely related species.

III. SPECIATION IN PROTISTS

(1) Geographic modes in protists

We conducted systematic searches of the literature on protist
speciation (details in Appendix S1) to find relevant case

studies on geographic modes, ecological divergence, and
other topics. Historically, each species of protist was thought
to live everywhere on Earth that had a suitable environment,
in contrast to most species of plants and animals
(i.e. ‘everything is everywhere, but the environment selects’;
Beijerinck, 1913; Baas Becking, 1934; Fenchel & Finlay,
2004; Bass & Boenigk, 2011). Although this idea implies that
allopatry is not relevant for protist speciation, very few stud-
ies have addressed their geographic modes. Two relevant
studies suggest that allopatric speciation does occur in pro-
tists. First, Kamiya et al. (1998) found support for allopatric
speciation in a sister-species pair of Caloglossa (Rhodophyta)
with non-overlapping ranges. Second, Pereyra et al. (2009)
suggested that a sister-species pair in Fucus (Phaeophyta)
diverged in allopatry, after the opening of the Baltic Sea.
However, their current distributions partially overlap
(Pereyra et al., 2009). These two studies do suggest that allo-
patric speciation may occur in protists, but more studies are
clearly needed on this topic. We found no large-scale exam-
ples of sympatry or parapatry of sister species (but see Section
III.2). Overall, too few relevant studies are available to allow
estimating the frequencies of different geographic modes in
protists.

(2) Ecological divergence in protists

Ecological divergence potentially associated with speciation
has been described inmany free-living and symbiotic protists,
especially in marine lineages (e.g. Choanoflagellata, Chloro-
phyta, Chrysophyceae, Ciliophora, Foraminifera, Phaeo-
phyta). Below, we review some of the niche axes on which
sister species have been found to diverge in different protist
clades. Lazarus (1983) found partitioning between foraminif-
eran species in the water column, potentially related to salin-
ity differences. Ecological divergence of 13 foraminiferan
sister morpho-species was associated with concentration gra-
dients of nutrients driven by coastal upwellings (Seears, Dar-
ling & Wade, 2012). Wylezich et al. (2012) suggested that

Table 1. Summary of congruent and incongruent nodes in comparisons of phylogenetic trees between bacterial symbiotes and their
hosts. The frequency of congruent nodes is the estimated percentage of co-speciation events relative to host-switching events. Note
that Thao et al. (2000) and Spaulding & von Dohlen (2001) both involve psyllid plant lice, but their taxon sampling is only partially
overlapping. Thao et al. (2000) only considered nodes that were strongly supported

Host Congruent Incongruent Ambiguous Reference

Acanthosomatid stinkbugs 8/11 (73%) 3/11 0/11 Kikuchi et al. (2009)
Nycteribiid flies 6/7 (86%) 1/7 0/7 Hosokawa et al. (2012)
Psyllid plant lice (Hemiptera) 5/10 (50%) 5/10 0/10 Spaulding & von Dohlen (2001)
Sepiolid squid 4/6 (67%) 1/6 1/6 Nishiguchi et al. (1998)
Glossinidae (tsetse flies) 5/5 (100%) 0/5 0/6 Chen et al. (1999)
Aphids (genus Uroleucon) 5/8 (62%) 2/8 1/8 Clark et al. (2000)
Dryophthorid beetles 7/10 (70%) 3/10 0/10 Lefevre et al. (2004)
Carpenter ants 6/12 (50%) 3/12 3/12 Sauer et al. (2000)
Psyllid plant lice (Hemiptera) 9/9 (100%) 0/9 0/9 Thao et al. (2000)
Plataspid stinkbugs 7/7 (100%) 0/7 0/7 Hosokawa et al. (2006)
Aphids (multiple genera) 9/9 (100%) 0/9 0/9 Moran et al. (1993)
Cockroaches 8/9 (89%) 1/9 0/9 Lo et al. (2003)
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establishment and subsequent divergence of a single species
pair of marine choanoflagellates was associated with changes
in mitochondrial cristae, which influence tolerances to hyp-
oxic conditions. Tucker (2013) proposed that horizontal gene
transfer allowed some choanoflagellate species to exploit
novel environments (i.e. nutrient-poor conditions). Diver-
gence between a sister-species pair within Chrysophyceae
(Ochromonas) and one within Ciliophora (Oxytricha) were asso-
ciated with tolerances to different pH regimes (Weisse et al.,
2011). In ciliates, closely related species may diverge in their
salinity distributions (Stock et al., 2013).

Ecological divergence in symbiotic protists is only rarely
addressed. Thins et al. (2009) found that divergence of one
species pair in the oomycete genus Albugo was associated with
physiological tolerances to different hosts. Other studies have
addressed the roles of host-switching and co-speciation (see
Section III.4).

In summary, among the 17 sister-species pairs of protists
reviewed here, 100% showed some sort of ecological diver-
gence. Furthermore, in almost all of these pairs (94%;
16/17) the ecological divergence involved separation along
abiotic habitat gradients (e.g. nutrients, pH, oxygen concen-
tration). This might also suggest that at least some pairs may
have evolved in large-scale sympatry or small-scale parapa-
try, but further studies are needed to test this (Weisse, 2007).

(3) Reproductive isolating barriers in protists

Most studies on intrinsic reproductive barriers have focused on
free-living protists. Below we summarize the barriers among
sister species found in different clades. Within the Crypthecodi-

nium cohnii species complex (Dinozoa), gametic incompatibility
between morphologically similar strains correlated with physi-
ology (e.g. radiation response) and structural differences in
DNA (e.g. doubling time, chromosome number; 1 sister pair;
Beam & Himes, 1977). Coleman (2001) found genetic clusters
in Pandorina algae (Charophyta) that were sexually isolated
through gametic incompatibility (15 sister pairs). Prezygotic
isolation though gametic incompatibility has been reported in
many other diatoms (1 sister pair: Chromalveolata: Pseudo-
nitzschia; Amato et al., 2007), and Paramecium (14 sister pairs:
Ciliophora; Coleman, 2005). Polyploidization appears to be
an important isolating barrier in some ciliates (1 species pair;
Aury et al., 2006), and algae (Ramjee & Sarma, 1971), includ-
ing Micrasterias (2 sister pairs: Charophyta; Poulíèková et al.,
2014), and Antithamnion (1 species pair: Rhodophyta; Maggs
et al., 2011). Clonal reproduction is also an isolating barrier in
brown algae (Phaeophyta; 1 species pair; Pereyra et al., 2009).
Hybrid sterility, a form of postzygotic isolation, has been docu-
mented in red algae (Rhodophyta; Niwa, Kobiyama &
Sakamoto, 2010).

Gametic incompatibility also appears to be widespread in
symbiotic protozoa. In Plasmodium berghei (Apicomplexa), the
absence of certain proteins in female gametes increases
hybridization with P. yoelii males (1 species pair; Ramiro
et al., 2015). In Trypanosoma (Excavata), reproductive isolation
is primarily controlled at the level of gamete fusion (Peacock

et al., 2014). Pre-mating isolation, examined using in vitro

experimentation, is the most frequently reported barrier in
oomycete plant pathogens [review in Restrepo et al. (2014),
table 1]. Finally, closely related symbiotic dinoflagellates
appear to be isolated by ploidy changes (Loeblich, Schmidt &
Sherley, 1981; Blank & Trench, 1985) or host specificity
(Lajeunesse & Thornhill, 2011).
Overall, the exact frequency of each isolating barrier

among protist species remains unclear. However, prezygotic
isolation through gametic incompatibility and polyploidy
seem to be especially widespread (86 and 11%, respectively,
of 37 species pairs examined here).

(4) Host-mediated speciation in symbiotic protists

The relative roles of co-speciation and host-shifting in symbi-
otic protists may depend on the group of protists and their
ecology. Co-speciation appears to be predominant among
sampled members of Excavata, whereas host-switching is
more common among Apicomplexa. Specifically, Noda
et al. (2007) found support for 28 co-speciation events and a
single host shift among excavatans living in termites. In Api-
complexa, some studies have found frequent co-speciation in
Plasmodium species associated with primates [co-speciation =
1, host-shifts = 0 (Hughes & Verra, 2010); co-speciation
events = 3–5, host-shifts = 2–4 (Garamszegi, 2009)]. Con-
versely, among avian- and bat-associated Plasmodium, host-
switching is far more common [co-speciation = 0, host-shifts
= 1 (Waters, Higgins & McCutchan, 1991); co-speciation =
8, host-shifts = 50 (Ricklefs et al., 2004); co-speciation = 0,
host-shifts = 13 (Duval et al., 2007)]. Intriguingly, host-
shifting seems to occur more often in symbiotic protists asso-
ciated with highly mobile birds and bats, relative to less-
vagile hosts (e.g. termites, primates). In summary, host shift-
ing seems to be the dominant process driving speciation
among symbiotic protists, accounting for 62% of 109 specia-
tion events sampled here (Fig. 1). Nevertheless, more studies
are needed to estimate how the frequencies of these processes
vary based on symbiote clades and/or host ecology.

IV. SPECIATION IN FUNGI

(1) Geographic modes in fungi

To estimate the relative prevalence of different geographic
modes in fungi, we conducted a systematic literature search
(see Appendix S1 for methods). Among 55 sister-species pairs
found (Appendix S2, Table S1), 13 were allopatric (23.6%),
14 fully sympatric (25.5%), 19 partially sympatric (34.5%),
and 9 parapatric (16.4%). Sampling was dominated by patho-
gens (27 pairs, 49%) and fungi with conspicuous fruiting
bodies (11 pairs, 20%). Only the two most species-rich phyla
(Ascomycota, Basidiomycota) were represented. The preva-
lence of sympatric pairs contrasts with Kohn (2005), who sug-
gested that allopatric speciation is more common, based
on mushroom-forming Basidiomycota. Among sampled
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Basidiomycota, we found allopatric pairs were indeed most
common: of 13 species-pairs, five were allopatric (38.5%), two
fully sympatric (15.4%), four partially sympatric (30.8%), and
two parapatric (15.4%). Giraud et al. (2008) argued that sym-
patric speciation is rare in fungi. Nevertheless, our survey found
more fully sympatric pairs than allopatric pairs. Interestingly,
most (30/33, 91%) sympatric and partially sympatric sibling
species were not host-specific symbionts, in which host shifts
or co-speciation provide an easy explanation for reproductive
isolation and divergent adaptation.

(2) Ecological divergence in fungi

Studies of potential ecological speciation are rare in fungi
(Douhan et al., 2008). Using the search terms “fungi” and “eco-
logical speciation” (Google Scholar, June 2019), we identified five
case studies in which the authors proposed that adaptation to
divergent environments led to reproductive isolation and speci-
ation. In two cases, plant pathogenic fungi were reproductively
isolated by adaptation to different host species. In the other
three cases, ‘phylospecies’ were isolated by habitat characteris-
tics, notably temperature. Phylospecies refers to morphologi-
cally cryptic species that are revealed by molecular
phylogenetic analyses within traditional, morphology-based
fungal species (Taylor et al. 2000). We restricted this analysis
to species pairs that show molecular divergence and limited
gene flow, even if they are not formally described.

Among symbiotic fungi, ecological speciation can occur
when populations adapt and specialize to different hosts. In
Ascochyta, species are highly specialized to a given host species
and unable to infect others, but they are otherwise fully

intercompatible and produce viable offspring (Peever, 2007;
Restrepo et al., 2014). However, the progeny are unable to
infect the parental host species, leading to isolation from paren-
tal populations (Peever, 2007). Stukenbrock et al. (2010) found
that Zymoseptoria tritici was more pathogenic on wheat than its
relatives and there was no evidence of gene flow between iso-
lates since the domestication of wheat. Some authors have pro-
posed that many plant pathogens emerged as a result of
ecological speciation via adaptation to divergent host plants
(Giraud, Gladieux & Gavrilets, 2010). However, studies often
identify cryptic phylospecies within sympatric plant pathogen
species complexes that have no clear separation by habitat or
host (e.g. Queloz et al., 2011). This latter pattern suggests that
other barriers to gene flow besides host specialization could
be widespread in these fungal symbiotic systems.

Mycorrhizal fungi form close mutualistic symbioses with
their plant hosts, but most mycorrhizal fungi are not special-
ized to a single host species (Bruns, Bidartondo & Taylor,
2002). We found no examples of host-driven speciation in
this group. One study suggested that specialization to fungal
arbuscular mycorrhizae led to later speciation in the plant
hosts: this pattern challenges the widespread assumption that
hosts drive the speciation of symbionts rather than the
reverse (Merckx & Bidartondo, 2008).

Three studies found evidence for possible speciation
through divergent adaptation to different abiotic habitats.
Douhan et al. (2008) found that in the grass pathogen Claviceps
purpurea, phylospecies correspond to habitat types of host
grasses (dry terrestrial, intermediate, riparian) and not to
geography or host species. Bidochka, Small & Spironello
(2005) identified sympatric, cryptic phylospecies of the soil-

(38%)
Co-speciation

Host-switching
(62%)

Co-speciation
(55%)

Host-switching
(45%)

Co-speciation
(79%)

Host-switching
(21%)

FUNGIPROTISTBACTERIA

Fig. 1. Relative frequencies of co-speciation and host-switching in symbiotic bacteria, protists, and fungi. Values for bacteria are
based on Table 1 (mean across studies), with a total sample size of 103 speciation events. Values for protists are based on the
overall frequency of modes across all reported events (co-speciation and host-switching; N = 109). For those studies reporting a
range of values, the midpoint of the range was used. Within protists, Excavata and Apicomplexa show very different values, with
Excavata dominated by co-speciation (96%, N = 29 events total) and Apicomplexa dominated by host-switching (84%, N = 80).
Values for fungi are based on the midpoint of the ranges of estimates from the six studies summarized here, with the overall values
based on the mean across studies. The overall number of speciation events (from the sum of the midpoints for each mode and
study) is N = 157.
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inhabiting insect pathogen Metarhizium anisopliae, and found
that isolates segregated into phylospecies according to ther-
mal tolerance, not hosts. Similar patterns were observed in
Beauveria bassiana, another soil-inhabiting insect pathogen
(Bidochka, Menzies & Kamp, 2002), in which isolates from
Arctic, forest, and agricultural soil were reproductively iso-
lated, and isolates from agricultural soil required higher tem-
peratures. Dettman et al. (2007) and Dettman, Anderson &
Kohn (2008) confirmed that reproductive barriers can arise
between populations that evolved under divergent experi-
mental conditions via antagonistic epistasis.

In summary, in parasitic and pathogenic fungi with narrow
host ranges, adaptations to the host were hypothesized to lead
to ecological speciation. Furthermore, adaptations to non-host
habitats might also lead to ecological speciation in these systems.

(3) Reproductive isolating barriers in fungi

Various isolating barriers have been observed in fungi. Sex-
ual reproduction in fungi is diverse, complex, and poorly
understood (Billiard et al., 2012). Further, many fungal spe-
cies are capable of both sexual and clonal reproduction,
and occasionally fungi recombine asexually (Kohn, 2005;
Taylor et al., 2015; Stukenbrock, 2016). The relative strength
and frequency of pre- and postzygotic reproductive barriers
appears to vary by phylum and by life-history traits.

Le Gac & Giraud (2008) analysed data from crossing exper-
iments in 33 fungal species complexes, and found that species
pairs in 16 complexes in the Agaricomycetes (Basidiomycota)
exhibited strong prezygotic, pre-mating reproductive barriers
in sympatry and inconsistent pre-mating barriers in allopatry.
By contrast, they found that examined pairs in Ascomycota
(primarily plant-pathogenic, 16 complexes) showed only weak
and inconsistent postzygotic reproductive barriers in sympatry
and allopatry, with limited-to-no pre-mating barriers. Other
authors found post-mating barriers in Neurospora (Ascomycota)
to be stronger between sympatric than between allopatric iso-
lates (Turner, Jacobson & Taylor, 2010).

Work on genomic isolating barriers is largely confined to the
model ascomycetes, Saccharomyces and Neurospora. In these gen-
era, the strength of reproductive isolation is positively correlated
with sequence divergence between isolates (Liti, Barton &
Louis, 2006; Dettman et al., 2008). This pattern is consistent
with the action of the mismatch repair system (which inhibits
recombination of divergent individuals), or genetic incompati-
bilities under the Dobzhansky–Muller model. In both systems,
postzygotic isolation, measured as the proportion of viable
progeny, was the primary form of reproductive isolation.

Speciation through hybridization has occurred in diverse
fungi, and may be more common between allopatric species
pairs than sympatric pairs (Steenkamp et al., 2018). Grass
endophytes in Epichloë (Ascomycota) hybridize, likely through
asexual means via the parasexual cycle, and the resulting
hybrid lineages are heteroploid and asexual (Moon et al.,
2004). The grass pathogen Zymoseptoria pseudotritici arose from
a homoploid hybridization event (Stukenbrock, 2016).
Under laboratory conditions, all species of Saccharomyces are

capable of hybridization, and wild hybrid isolates and hybrid
species are common (Hou, Fournier & Schacherer, 2016).

(4) Host-mediated speciation in symbiotic fungi

In order to estimate the prevalence of host-switch speciation
and co-speciation, we identified studies that used quantitative
co-phylogenetic methods. Jackson (2004) performed co-
phylogenetic analyses of 15 fungal species complexes
(Basidiomycota and Ascomycota) and their hosts, and inferred
that the proportion of co-speciation events ranged from 0.50 to
0.89 across these taxa. All examined parasite–host phylogenies
had both co-speciation and host-switch events (Jackson, 2004;
Morris & Moury, 2019). We identified six more-recent co-
phylogenetic studies of fungal symbionts of plants and other
taxa, which each estimated a range of different possible num-
bers of co-speciation versus host-switching speciation events.
These included studies of Microbotryum parasites of plants (co-
speciation = 0–12, host-switching = 0–22; Refrégier et al.,
2008), Anthracoidea parasites of sedge Carex (co-speciation =
7–10, host-switching and lineage duplication within host =
19–22; Escudero, 2015), Fusariummutualists of beetles (co-spe-
ciation = 3–4, host-switching = 4–5; O’Donnell et al., 2015),
Cosmospora parasites of other fungi (co-speciation = 6–7, host-
switching= 5–6; Herrera, Hirooka & Chaverri, 2016), Cyttaria
parasites of Nothofagus (co-speciation = 7–8, host-switching =
1–2; Peterson, Pfister &Bell, 2010), and Sclerotiniaceae symbi-
onts of plants (co-speciation = 2–42, host-switching = 31–89;
Navaud et al., 2018). One way to summarize these results is
to take themidpoint of the range of each study, and summarize
these as proportions. This suggests that the frequency of co-
speciation ranges from 0.27 to 0.83 among studies (mean =
0.45) and the frequency of host-switching from 0.17 to 0.71
(mean = 0.55). Thus, these more recent studies also suggest
that both mechanisms are widespread in fungi.
Non-quantitative comparisons of phylogenies between

microsporidian fungi (obligate unicellular parasites) and their
insect hosts also suggest that both co-speciation and host-
switching are common in this group (Andreadis et al., 2012;
Shafer et al., 2009). However, it is difficult to quantify the fre-
quency of the different modes directly from these studies.

V. SPECIATION IN PLANTS

(1) Geographic modes in plants

Botanists have long suggested that sympatric speciation may
be more common in plants than in animals (Stebbins, 1950;
Grant, 1981). We estimated the frequency of geographic
modes based on patterns of range overlap among sister-
species pairs (details in Appendix S1). We found 622 sister-
species pairs (Table 2), based on previous studies of
geographic modes in plants. Among these species pairs,
30.3% were allopatric, 18.1% fully sympatric, and 51.5%
partially sympatric. These results suggest that allopatric spe-
ciation may be the most frequent mode in plants, but that
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sympatric speciation may have a similar but lower frequency
(see also Skeels & Cardillo, 2019).

(2) Ecological divergence in plants

The role of ecology in speciation in angiosperms was
reviewed by Waser & Campbell (2004) and Givnish (2010).
Angiosperms include ~90% of land plant species. Pollination
is thought to play a fundamental role in ecological speciation
in angiosperms. Changes in floral traits and pollination syn-
dromes may be particularly important for reproductive isola-
tion (Waser & Campbell, 2004), especially in combination
with other factors (Kay & Sargent, 2009). For example, sym-
patric and morphologically similar species within Chiloglottis

(orchids) are known to be reproductively isolated, based on
comprehensive nuclear and chloroplast DNA analyses, yet
they can only be phenotypically distinguished by floral odour
compounds essential for pollinator attraction (Peakall &
Whitehead, 2014).

Direct mechanistic links between variation in floral morphol-
ogy, pollinator shifts, and reproductive isolation have been diffi-
cult to elucidate. Schemske & Bradshaw (1999) analysed
selection by pollinating hummingbirds and bees on an F2 hybrid
swarm derived from bee-pollinatedMimulus lewisii and its sister
species, hummingbird-pollinated M. cardinalis. They showed
that pollinators could create strong divergent selection pressures

for ‘bee’ flowers (low in anthocyanin and carotenoid pigments)
and ‘hummingbird’ flowers (rich in nectar and high in anthocy-
anins). Subsequent work showed that the difference between
these flower types is caused by changes in the cis-regulatory
region of a single gene, demonstrating that considerable isola-
tion via pollinator shift might be due to a single genetic change
(Yuan et al., 2013). Studies inM. aurantiacus showed that pheno-
typic differences between closely related ecotypes differing in flo-
ral traits are maintained by divergent selection on these traits in
this species, despite ongoing gene flow (Sobel&Streisfeld, 2015).

There is also macroevolutionary evidence for the impor-
tance of pollination to plant diversification. For example, stud-
ies have shown that lineages that utilize biotic pollinators have
increased diversification rates relative to those that do not, both
across land plants (Hernández-Hernández &Wiens, 2020) and
in particular angiosperm groups (e.g. figs; Bruun-Lund et al.,
2018). However, future studies should also test whether accel-
erated plant diversification rates are related to elevated rates
of switching among pollinator lineages. For example, floral
morphology appears to impact speciation rates in angiosperms
(e.g. Sargent, 2004; Hernández-Hernández & Wiens, 2020).
Specifically, floral asymmetry may increase pollinator specific-
ity and thus pollinator switching.

How common is ecological divergence in sister species of
plants and what traits diverge most frequently? This has been
examined quantitatively in South Africa’s Cape floristic

Table 2. Summary of estimated geographic modes of speciation for plants. Modes were inferred from geographic range overlap of
sister species pairs. In general, range overlap was calculated as the area occupied by both species divided by the area of the smaller-
ranged species, ranging from 0 (allopatric) to 1 (sympatric). Intermediate values were considered partially sympatric. Parapatry was
not treated as a separate category in most studies (except Price &Wagner, 2004). Instead, this mode is often considered a special case
of partial sympatry (van der Niet & Johnson, 2009). Pairs reported as parapatric were counted as partially sympatric here. Frequencies
were obtained directly from the references listed or estimated using data reported therein (the latter are marked with an *)

Taxonomic group Geographic region Frequency of geographic modes Reference

Angiosperms (12 families), 71 sister pairs California Floristic
Province

18.3% allopatric, 1.4% sympatric, 80.3%
partially sympatric

Anacker &
Strauss (2014)

Angiosperms (8 families), 188 sister pairs Cape Floristic Region 32.9% allopatric, 10.1% sympatric, 56.9%
partially sympatric

van der Niet &
Johnson (2009)

Sinningieae tribe (Gesneriaceae), 56
sister pairs

Atlantic forest of Brazil 40.8% allopatric, 6.1% sympatric, 53.1%
partially sympatric*

Perret et al. (2007)

Piper subgenus Ottonia) (Piperaceae), 9
sister pairs

Atlantic forest of Brazil,
Amazon and west
Andes

22.2% allopatric, 0% sympatric, 77.8% partially
sympatric*

Molina-Henao
et al. (2016)

Primulaceae, 11 sister pairs Mountains of the
European alpine
system

45.4% allopatric, 0% sympatric, 54.5% partially
sympatric

Boucher
et al. (2016)

Costus (Costaceae), 54 sister pairs Neotropics 18.5% allopatric, 38.9% sympatric, 42.6%
partially sympatric*

André
et al. (2016)

Mimulus (Phrymaceae), 24 sister pairs North America 20.8% allopatric, 37.5% sympatric, 41.7%
partially sympatric

Grossenbacher
et al. (2014)

Angiosperms, 52 sister pairs Hawaiian Islands 28.8% allopatric 42.3% sympatric, 28.8%
parapatric (adjacent but non-overlapping)

Price &
Wagner (2004)

Banksia, Hakea, Protea (Proteaceae), 122
sister pairs

Australia, South Africa 35.7% allopatric, 23.6% sympatric, 40.8%
partially sympatric

Skeels &
Cardillo (2019)

Sidalcea (Malvaceae), 8 sister pairs North America 25.0% allopatric, 37.5% sympatric, 37.5%
partially sympatric

Skeels &
Cardillo (2019)

Bursera (Burseraceae) 27 sister pairs Americas 18.5% allopatric, 29.6% sympatric, 51.9%
partially sympatric

Skeels &
Cardillo (2019)
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region (van der Niet & Johnson, 2009) and North America’s
California floristic region (Anacker & Strauss, 2014). In the
Cape region, ecological shifts were identified in 80% of
188 sister-species pairs. The most important ecological vari-
ables included shifts in habitat (different habitats in 32% of
132 pairs) and pollinators (33% of 173). Changes in soil types
were less important (17% of 162). In California, 65% of the
pairs had ‘complete’ shifts in one or more ecological traits
(i.e. no overlap between species). The traits that diverged
most frequently included habitat, soil type, and flower size,
whereas flowering times and chromosome counts differed
less often. Although ecological divergence is not necessarily
the same as ecological speciation, these results are potentially
consistent with the idea that ecological speciation is frequent
in plants and often involves habitat type.

(3) Reproductive isolating barriers in plants

Reproductive isolation in plants has been studied mostly in
angiosperms. Reproductive barriers in plants can be classified
as pre- and post-pollination, equivalent to prezygotic and post-
zygotic (review in Baack et al., 2015). Pre-pollination barriers
(review in Lowry et al., 2008) include immigrant inviability
(i.e. lower fitness of immigrants in non-native environments),
pollinator behaviour, phenological isolation (disparity in flow-
ering time), and mating system isolation (e.g. evolution of cross
or self-fertilization, or apomixis or asexual reproduction, within
a population). Post-pollination barriers include pollen competi-
tion (i.e. heterospecific pollen has reduced probability of reach-
ing the ovule compared to conspecific pollen), hybrid sterility,
and hybrid incompatibilities (Lowry et al., 2008).

There are several factors underlying post-hybridization isola-
tionandhybrid incompatibilities (review inChen,Zhigou&Lin,
2016). When parents are adapted to different environments
(Baack et al., 2015; Chen et al., 2016), hybrids may express inter-
mediate trait values and so have reduced fitness in the parental
habitats, causing embryonic inviability (hybrid inviability or
lethality), weakness of the vegetative phase in contrast to parents
(hybrid weakness), or sterility (hybrid sterility). It has been sug-
gested that selfish genetic elements such as repeat sequences,
transposable elements, and meiotic drivers are likely to be the
main cause of hybrid incompatibility (Presgraves, 2010; Chen
et al., 2016). Recent studies show that hybrid lethality is caused
by diverse genes in different species that have been assessed
(e.g.Cifand cim in rice,MEDEA inArabidopsis), andmight be con-
trolled by multiple loci in each species (Chae et al., 2014; Chen
et al., 2016). These results are consistent with the Dobzhansky–
Muller model, in which gene interactions cause hybrid lethality.

Recent studies suggest that pre-pollination barriers are
often very strong, and typically contribute more to total
reproductive isolation in plants than postzygotic barriers
[reviews in Lowry et al. (2008) and Baack et al. (2015)]. Adap-
tive divergence in response to ecological factors (such as pol-
linators and habitat) is thought to commonly drive the
evolution of prezygotic barriers (Rieseberg & Willis, 2007).
However, in contrast to animals, the observation that prezy-
gotic barriers evolve faster than postzygotic barriers has not

been confirmed in plants (Widmer, Lever & Cozzolino,
2009). This could be a consequence of a more complex
genetic architecture underlying prezygotic barriers in plants
(Widmer et al., 2009). Alternatively, in contrast to animals,
plants cannot directly choose their mates but instead depend
on pollinators for successful gamete transfer, even though
these pollinators are often unreliable (Widmer et al., 2009).
The development of intrinsic postzygotic barriers has been

studied extensively in plants, particularly the role of poly-
ploidy. Intrinsic barriers frequently result in polymorphism
of incompatibility factors within species (Rieseberg & Willis,
2007). Polyploid speciation, in which the entire genome is
duplicated, may be particularly frequent in plants. It is esti-
mated that 15% of speciation events in angiosperms and
31% in ferns are accompanied by ploidy increases (Wood
et al., 2009). This high frequencymay occur because polyploid
plants often exhibit ecological differentiation, local dispersal,
high fecundity, perennial life history, and self-fertilization or
asexual reproduction (Rieseberg & Willis, 2007).
Speciation by hybridization is also thought to be important

in plant speciation (Hegarty & Hiscock, 2005). The frequency
of spontaneous natural hybridization varies considerably
among different plant genera and families (Ellstrand, Whit-
kus & Rieseberg, 1996), and is most common among outcross-
ing species with reproductive strategies that can stabilize
hybridity, such as vegetative reproduction, permanent odd
polyploidy or agamospermy. Ellstrand et al. (1996) concluded
that hybrids comprise 6–22% of all angiosperm species.
Plant species are typically isolated not by a single factor, but

by a large number of different pre- and postzygotic barriers,
and their potentially complex interactions (review in Widmer
et al., 2009). By analysing the strength of isolation imposed by
several reproductive barriers, Lowry et al. (2008) found that
each individual barrier is rarely sufficient to cause complete
reproductive isolation. Although individual reproductive bar-
riers can arise rapidly, the fact that most plant species remain
separated by numerous barriers implies that complete intrin-
sic reproductive isolation typically requires many thousands
of generations. The main exceptions to this are hybrid and
polyploid speciation (Rieseberg & Willis, 2007).

VI. SPECIATION IN ANIMALS

There is an enormous literature on animal speciation. There-
fore, we divided animals into four sections. We focused on
three major clades (molluscs, insects, vertebrates) that are
large and well studied. We also include a section on marine
invertebrates. Several major phyla are not included here
(e.g. Annelida, Nematoda, Platyhelminthes), but initial
searches found few studies on speciation in these groups.

(1) Molluscs

(a) Geographic modes in molluscs

To infer geographic modes, we searched the literature and
analysed range overlap of sister species (methods in Appendix
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S1). Sister species from the same region but with uncertain
range overlap were not considered. A total of 172 of
227 (76%) sister-species pairs of marine molluscs were allo-
patric (Table 3). Allopatry was also dominant (73%) in fresh-
water molluscs (11/15 pairs; Table 3). Land snails have been
understudied, except on islands. In archipelagos, 96% of spe-
cies pairs were allopatric, with most allopatric species
endemic to a single island, including Hawai’i (Holland &
Cowie, 2009), Belau (Rundell, 2008), and Azores (Jordaens
et al., 2009). There were also micro-allopatric pairs within
islands (Galápagos: Parent & Crespi, 2006), supporting the
idea that terrestrial snails have limited dispersal. We found
similar frequencies of allopatric and sympatric pairs in conti-
nental terrestrial snails (43% each; Table 3), but based on
only seven pairs. Overall (Table 3), we found that most sam-
pled sister species in molluscs are allopatric (78%) and not
sympatric (15%) or partially overlapping or parapatric (7%
in total).

(b) Ecological divergence in molluscs

Ecological divergence was reported in 18 of 29 pairs (62%) of
marine molluscs (Appendix S2, Table S2). Most cases corre-
sponded to habitat divergence (13 pairs), such as physical sub-
strate, salinity/nutrients, bathymetry, and temperature
(Table S2). Other cases involved interspecific interactions,
such as shifts in coral host species (three pairs), symbiont diver-
gence (one pair), and antipredator metabolism (one pair).

Ecological divergence was reported infrequently in fresh-
water molluscs (4 of 15 pairs; Appendix S2, Table S3). How-
ever, it likely played a role in freshwater species flocks, with
divergence associated with habitat (e.g. substrate, bathyme-
try) and diet (Glaubrecht, 2011). Larval host shifts were
reported in two species pairs in Unionidae (Graf, 1997). In
terrestrial snails, ecological divergence was supported for
one island pair only (Table S4). Ecological divergence was
insufficiently studied in continental snails.

(c) Reproductive isolating barriers in molluscs

Isolating barriers have been documented in relatively few mol-
luscs. Post-mating, prezygotic gamete recognition and compe-
tition were shown in the marine gastropod genera Haliotis and
Tegula, and the bivalve genus Mytilus (Bierne, Bonhomme &

David, 2003; Krug, 2011). Isolation based on different timing
of gamete release in different species (pre-mating barrier)
occurs in Hawaiian limpets (Bird et al., 2011). Other cases
invoke ecological or geographic isolation but the specific bar-
riers are unclear (Table S2). Geographic isolation is associated
with reduced dispersal capacities (e.g. non-planktonic larval
development), often combined with vicariant refugia or tran-
sient allopatry due to changing sea levels (Krug, 2011). Postzy-
gotic barriers (inferred from reduced hybrid fitness) were found
in some Littorina species (Krug, 2011).

Geographic isolation is dominant in freshwater and terres-
trial molluscs (Tables S3 and S4), potentially related to limited
dispersal capacities at small scales (e.g. upper versus lower por-
tions of streams, bathymetry) and geographic barriers at larger
scales (e.g. islands or mountains). Divergence in habitat and
diet have been proposed as factors underlying sympatric speci-
ation (Glaubrecht, 2011; Cameron, 2013). There is some evi-
dence for postzygotic barriers (maladaptive hybrids) in
Albinaria snails (Cameron, 2013). Although shifts between left
and right-handedness (chirality) in snail shells has been sug-
gested as a possible mechanism for single-gene speciation in
gastropods, the classic case study (Ueshima & Asami, 2003) of
this phenomenon in Japanese snails (Euhadra) has not been sup-
ported by recent analyses (Richards et al., 2017).

(2) Insects

Speciation in insects has been intensively studied. Many
review papers are available on different aspects of insect spe-
ciation (e.g. Berlocher & Feder, 2002; Matsubayashi,
Ohshima & Nosil, 2010; Mullen & Shaw, 2014). We col-
lected information on geographic modes, ecological diver-
gence, and isolating barriers for 231 sister-species pairs
(methods in Appendix S1, pairs listed in Appendix S2, Tables
S5–S7, and summarized in Table S8). We caution that our
review is not comprehensive: we cannot claim to have
included all species of insects included in past speciation stud-
ies. However, we do have a large sample size of species pairs
with which to make some inferences. Many (N = 30) of our
putative sister-species pairs involved within-species compari-
sons, including host races of herbivorous insects and subspe-
cies (and other geographic types) of Drosophila. Because these
include many classic systems in speciation research, we
decided to include these in most analyses (but we refer to

Table 3. Summary of estimated geographic modes of speciation inmolluscs. Numbers correspond to the number of species pairs with
a given pattern of geographic range overlap (percentages represent the frequencies across all relevant pairs). Data are given in
Appendix S2, Tables S2–S4

Sister-species pairs Allopatric Sympatric Parapatric Partially overlapping

Total molluscs 241 (78%) 46 (15%) 8 (2%) 15 (5%)
Marine molluscs 172 (76%) 35 (15%) 5 (2%) 15 (7%)
Freshwater molluscs 11 (73%) 3 (20%) 1 (7%) 0
Terrestrial molluscs 29 (85%) 4 (12%) 1 (3%) 0

island snails 26 (96%) 1 (4%) 0 0
continental snails 3 (43%) 3 (43%) 1 (14%) 0
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them as ‘species pairs’ also). We also performed some com-
parisons excluding these pairs, especially for geographic
modes and ecological divergence (to make these results more
comparable to other groups). These comparisons yielded
similar results. Importantly, these latter analyses also showed
that these patterns in insects were robust to excluding dozens
of case studies.

(a) Geographic modes in insects

Among the 231 sister-species pairs, 137 (59%) may corre-
spond to allopatric speciation, whereas 54 (23%) were
sympatrically distributed (Table 4). For those with range-
overlap data only (136 pairs), we found 56 allopatric pairs
(41%), 41 sympatric (30%), 8 parapatric (6%), and 31 par-
tially overlapping (23%). For the 95 pairs included in ARC
analyses (e.g. Barraclough & Vogler, 2000), 81 pairs (85%)
were inferred to be allopatric and only 13 (14%) sympatric
and one (1%) parapatric. One reason for these different esti-
mates of sympatric speciation (30 versus 14%) is that many
currently sympatric pairs may have initiated speciation in
allopatry and became sympatric secondarily (Yukilevich,
2014). Another reason is that inconclusive ARC analyses
were not used (those with no significant trend, presumably
because of mixed speciation patterns; Jiggins et al., 2006).
This might inflate ARC-based estimates of allopatric specia-
tion. Nevertheless, both estimates suggest that sympatric spe-
ciation is relatively uncommon, as often noted (e.g. Bolnick &
Fitzpatrick, 2007). We also performed these overall compar-
isons after excluding all pairs that were not currently recog-
nized as taxonomically distinct species. This yielded similar
frequency estimates (63% allopatric, 19% sympatric; N

= 201) to those including all 231 pairs (59% allopatric,
23% sympatric).

(b) Ecological divergence in insects

We reviewed evidence for ecological divergence in the same
231 sister-species pairs (see Appendix S1). Insufficient evi-
dence was found for 120 pairs (Table 4). Among the

111 other pairs, ecological divergence was supported in
89 pairs (80%). In other cases (22 pairs, 20%), non-ecological
speciation was suggested after extensive study (e.g. Imada,
Kawakita & Kato, 2011). We found similar results after
excluding intraspecific pairs (divergence in 77%, none in
23%, N= 88 total). Ecological divergence might occur under
any geographic mode, and it is unclear how geographic
modes are related to ecological divergence (Matsubayashi
et al., 2010; Nosil, 2012). However, ecological divergence
may be necessary for sympatric speciation [e.g. apple maggot
fly Rhagoletis pomonella (Filchak, Roethele & Feder, 2000);
Timema walking sticks (Soria-Carrasco et al., 2014)]. Here,
we found that most sympatric pairs were ecologically diver-
gent (34/42 pairs; 81%), but so were most allopatric pairs
(33/46 pairs; 72%). The majority of pairs with no apparent
ecological divergence were allopatric (13/22; 59%).
We also analysed geographic modes among cases of eco-

logical divergence via host shift. Host shift has been proposed
as a factor underlying sympatric speciation, especially in her-
bivorous insects (Berlocher & Feder, 2002; Drès & Mallet,
2002). We found that the majority of ecologically divergent
pairs had a host shift (49/70 pairs, 70%, including 48/65
herbivorous pairs; Table 4). However, this might be because
host shifts may be easier to observe than other types of eco-
logical divergence, and ecological divergence without host
shifts may be hidden in pairs that were not assessed for eco-
logical divergence (Table 4). Besides host shifts, other causes
of ecological divergence included host adaptation in herbivo-
rous or parasitic species (e.g. phenological or spatial adapta-
tion) and Müllerian mimicry (predator avoidance; Rosser
et al., 2015).
Interestingly, the proportion of host shifts in ecologically

divergent pairs was higher in allopatric pairs (87%, 20/23 pairs)
than sympatric pairs (58%, 18/31 pairs) (Table 4). Our results
are concordantwith those of Linnen&Farrell (2010),who found
that most host shifts occurred in allopatry in Neodiprion sawflies.
These results suggest that speciation via host shift may be as or
more common in allopatry than in sympatry.
How precisely herbivory, specialization, and host shifts

contribute to speciation is still debated (e.g. Janz, 2011;

Table 4. Summary of estimated geographic modes of speciation and ecological divergence among species pairs of insects. Numbers
are numbers of sister-species pairs (and percentages). Data for each pair are given in Appendix S2, Table S8

Sister-species pairs Allopatric Sympatric Parapatric Partially overlapping

Geographic modes
All studies 137 (59%) 54 (23%) 9 (4%) 31 (13%)
Current geographic range 56 (41%) 41(30%) 8 (6%) 31 (23%)
ARC 81 (85%) 13 (14%) 1 (1%) 0

Ecological divergence
Yes 33 (37%) 34 (38%) 2 (2%) 20 (22%)

with host shift 20 (41%) 18 (37%) 0 11 (22%)
without host shift 3 (14%) 13 (62%) 2 (9%) 3 (14%)
host contribution unknown 10 3 0 6

No 13 (59%) 8 (36%) 1 (4%) 0
Not assessed 91 12 6 11

ARC, age–range correlation.
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Wiens, Lapoint & Whiteman, 2015; Kergoat, Meseguer &
Jousselin, 2017). Forbes et al. (2017) reviewed 85 speciation
events across seven orders of specialist insect taxa that may
have shifted hosts. They found evidence for host-
associated genetic structure in 65, host shifts involved in
new reproductive barriers in 43, a direct role of host shift
in speciation in 26, and evidence that host shifts initiated
speciation in 8. The latter result may suggest that host
shifts might only rarely initiate speciation, but might
instead appear later in the speciation process (e.g. after
allopatry).

(c) Reproductive isolating barriers in insects

We also reviewed isolating barriers among the 231 sister-
species pairs (Tables S4–S7). Pre-mating isolation was docu-
mented in 153 pairs, and insufficiently studied for the
remaining 78 (Table 5). Most sympatric pairs (78%; 42/54)
had documented pre-mating isolation, presumably reflecting
efforts to understand sympatric speciation.

In most pairs that were assessed for both ecological and
sexual isolation (i.e. through sexual selection), both were
found to have occurred (67%; 35/52). For example, in heli-
coniine butterflies, wing colour patterns undergo both sexual
selection via assortative mating and ecological selection. Eco-
logical selection occurs because hybrids with non-parental
wing patterns have reduced fitness due to increased preda-
tion (Jiggins, 2008). Many pairs are also sexually isolated
due to assortative mating via host or habitat selection
(Matsubayashi et al., 2010). Either ecological isolation alone
(7/52, 13%) or sexual isolation alone (10/52, 19%) were less
frequent. Sexual isolation is especially well studied inDrosoph-
ila, which diverge in both courtship behaviour and cuticular
hydrocarbons. However, ecological divergence was unclear
for most Drosophila pairs (Table S6). Both ecological selection

and sexual selection are considered major isolating barriers
in insect speciation (Arnqvist et al., 2000; Forbes et al.,
2017). Mullen & Shaw (2014) reviewed six model systems at
early stages of speciation (Heliconius butterflies, Laupala

crickets, Rhagoletis apple maggot flies, Acyrthosiphon aphids,
Anopheles mosquitoes, and Drosophila fruitflies). They found
that all had multiple simultaneous axes of divergence and
associated isolating barriers (e.g. disruptive ecological selec-
tion and sexual selection).

Post-mating isolation was studied in only 58 of the
231 pairs, including 22 allopatric and 24 sympatric pairs
(Table 5). Postzygotic barriers were found in 45 pairs, and
post-mating, prezygotic barriers were found in eight pairs.
However, both types were seldom investigated in the same
pairs. For those pairs with information for both types, three
showed only prezygotic isolation, none had postzygotic isola-
tion only, three had both types, and three had neither. When
considering all prezygotic barriers (pre- and post-mating),
79% (42/53) pairs showed both pre- and postzygotic isola-
tion, and 21% (11/53) showed prezygotic isolation only.
Coyne & Orr (1989, 1997) found that prezygotic (both pre-
and post-mating) isolation is stronger than postzygotic
isolation in young Drosophila sister species, due to strong pre-
zygotic sexual isolation in sympatric pairs. The dominant
post-mating, prezygotic isolation barrier was gametic incom-
patibility, and the dominant postzygotic barrier was hybrid
inviability and/or sterility.

(3) Marine invertebrates

Except for a few species-rich phyla, most major clades of ani-
mals are marine invertebrates, including Porifera (sponges;
~8500 described species; Appeltans et al., 2012), Cnidaria
(corals, jellyfishes; ~11000 species), and Echinodermata
(~7000 species). Many of these phyla share a sessile or

Table 5. Summary of inferred reproductive isolating mechanisms among sampled species pairs of insects. Numbers (and
percentages) are of sister-species pairs in each category. Unless otherwise stated with ‘yes/no’ (presence/absence), numbers represent
the number of pairs for which the isolation mechanism was found. Details are given in Appendix S2, Table S8

Sister-species pairs Allopatric Sympatric Parapatric Partially overlapping

Pre-mating isolation
Total assessed 89 42 6 16
Ecological isolation only 1 (14%) 5 (71%) 0 1 (14%)
Sexual isolation only 2 (20%) 7 (70%) 1 (10%) 0
Both 16 (46%) 17 (49%) 1 (3%) 1 (3%)
Ecological (sexual unknown) yes: 15; no: 11 9 1 14
Sexual (ecological unknown) 44 4 3 0
Not assessed 48 12 3 15

Post-mating isolation
Total assessed 22 24 5 7
Prezygotic only 1 2 0 0
Postzygotic only 0 0 0 0
Both 2 1 0 0
Neither 1 2 0 0
Prezygotic (postzygotic unknown) 0 0 0 2
Postzygotic (prezygotic unknown) 18 yes: 17; no: 2 yes: 3; no: 2 yes: 4; no: 1
Not assessed 115 30 4 24
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relatively immobile adult form, broadcast spawning, limited
behavioural complexity, and hermaphroditism (Willis et al.,
2006; Bush, Hunt & Bambach, 2016). These factors may
influence geographic modes, ecological divergence, and
reproductive isolating barriers.

(a) Geographic modes in marine invertebrates

Broadcast spawning poses a paradox for speciation (Palumbi,
1994). First, the marine environment has few obvious bar-
riers to dispersal. Second, pelagic larvae may travel thou-
sands of kilometers. These factors may limit opportunities
for allopatric speciation through geographic isolation. Nev-
ertheless, there are thousands of marine invertebrate species
(Appeltans et al., 2012). One potential resolution to this par-
adox is that sympatric speciation is more common in the
ocean than on land (Bowen et al., 2013).

We assembled information on 288 sister-species pairs from
109 studies, five phyla, and 15 classes of marine invertebrates
(Table 6; details in Appendix S1 and Tables S9, S10). Note
that these groups contained a small number of secondarily
freshwater members (17 of 288 sister-species pairs), which
are included in these counts (but see Table 6). The number
of studies for each class was generally proportional to that
class’ total richness (Pearson’s correlation among classes: ρ
= 0.90, P < 0.001). We found that allopatry was dominant
overall (68.0% of species pairs). Partially sympatric pairs
were uncommon (7.6%). Complete range overlap (sympatry)
was not rare (24.7%).

Marine cnidarians had a high frequency of entirely sym-
patric pairs (34.1% overall; anthozoans = 41.2%, cubozoans
= 0%, scyphozoans = 0%, hydrozoans = 32.4%, myxozoans
= 66.7%). Thus, sympatric speciation might be the norm in
some of these groups. In fact, sympatric pairs of corals were
likely underestimated here because we required sister species
to be reciprocally monophyletic, and many corals instead
show reticulate evolution (e.g. Willis et al., 2006).

An important question is whether sympatric pairs arise
from sympatric speciation, or from allopatric speciation
and range shifts (Bowen et al., 2013). Coral reefs and other
coastal habitats may be especially suited to ecological

speciation in sympatry given strong competition and sharp
abiotic gradients in temperature, salinity, and sedimenta-
tion (Bowen et al., 2013). However, high dispersal may
facilitate secondary sympatry (Knowlton, 1993), and might
explain the greater frequency of sympatric pairs in marine
groups. This issue could be resolved by using phylogenies
to determine if pairs with less range overlap diverged
more recently (supporting initial allopatry and subsequent
range shifts). Palumbi & Lessios (2005) and Quenouille
et al. (2011) corroborated this pattern in sea urchins. Fur-
ther research using this approach should shed light on
whether geographic modes differ in marine and non-
marine clades.

(b) Ecological divergence in marine invertebrates

Benthic species often diverge across depth gradients (i.e. one
sister in shallower water and the other in deeper water),
including in corals (e.g. Eytan et al., 2009), echinoderms (e.g.
Rogacheva et al., 2013), and ascidians (Dias et al., 2009). Sister
species can also diverge in habitat type [e.g. seagrass beds ver-
sus coral reefs (Carlon et al., 2011); mangroves versus reefs
(Rutzler, Duran & Piantoni, 2007); open ocean versus saline
lakes (Dawson & Martin, 2001)]. Pelagic, wide-ranging spe-
cies may undergo ecological divergence in allopatry or para-
patry along thermal gradients (e.g. Schroth et al., 2002).
Sister species may also have divergent life-history strategies
[e.g. brooding versus broadcast spawning (Puritz et al., 2012);
colonial versus solitary (Tarjuelo et al., 2004)]. These life-
history transitions may themselves facilitate speciation, or
may be associated with divergence in other ecological factors.
Groups with low dispersal ability may be more likely to

diverge ecologically, because local adaptation can be inhib-
ited under extensive gene flow between populations
(Knowlton, 1993; Eytan et al., 2009; Pogson, 2016). How-
ever, some cosmopolitan species have been revealed to be
locally adapted cryptic species complexes (Schroth et al.,
2002). The relationships between geographic mode, ecologi-
cal speciation, and dispersal ability in marine systems form an
important area for future investigation.

Table 6. Summary of estimated geographic modes in marine and secondarily freshwater invertebrates. Details and references are
given in Appendix S2, Tables S9 and S10

Phylum Habitat Studies
Sister-species

pairs
Allopatric

pairs
Partially sympatric

pairs
Sympatric

pairs

Porifera Marine 17 25 16 (64.0%) 2 (8.0%) 7 (28.0%)
Freshwater 1 5 4 (80.0%) 0 1 (20.0%)

Cnidaria Marine 39 88 53 (60.2%) 5 (5.7%) 30 (34.1%)
Freshwater 5 12 6 (50.0%) 2 (16.7%) 4 (33.3%)

Placozoa Marine 1 2 1 (50.0%) 0 1 (50.0%)
Echinodermata Marine 28 128 98 (76.6%) 8 (6.3%) 22 (17.2%)
Chordata (non-vertebrates) Marine 18 28 17 (60.7%) 5 (17.9%) 6 (21.4%)
Marine total 103 271 185 (68.3%) 20 (7.4%) 66 (24.4%)
Freshwater total 6 17 10 (58.8%) 2 (11.8%) 5 (29.4%)
Overall total 109 288 195 (67.7%) 22 (7.6%) 71 (24.7%)
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(c) Reproductive isolating barriers in marine invertebrates

Broadcast spawning is the most common reproductive mode
among the invertebrate groups considered here (Bush et al.,
2016). The two most important isolating barriers in broad-
cast spawners are thought to be temporal differences in
spawning and gametic incompatibility (e.g. Wolstenholme,
2004; Binks et al., 2012). Famously, in the Great Barrier Reef,
>30 coral species spawn together within hours, and >130
spawn in the same month (Harrison et al., 1984). Willis et al.
(2006) performed experiments showing that heterospecific
gametes of Great Barrier Reef corals were usually compati-
ble in the laboratory. Still, they suggested that prezygotic iso-
lating factors must be at work for at least some species, since
the frequency of hybridization between congeneric pairs var-
ies widely in nature. A difference in spawning times of a few
hours is considered sufficient to maintain isolation between
some species, because gametes deteriorate rapidly or become
diluted (Fukami et al., 2003; Willis et al., 2006). However,
temporal barriers may still be somewhat porous, as implied
by frequent reticulate evolution in many coral species
(Willis et al., 2006).

Gametic incompatibility is well studied in sea urchins
(Palumbi&Lessios, 2005; Lessios, 2011). Bindin is a protein that
binds sperm to eggs, and is sometimes called a ‘speciation gene’
because of its potential to create reproductive isolationwithmin-
imal genomic divergence (Landry et al., 2003). Gametic incom-
patibility between congeneric species pairs is not correlated
with time since their split but instead with bindin divergence
(Palumbi & Lessios, 2005). In addition, bindin shows positive
selection in species in sympatry with congenerics, but neutral
evolution in allopatry (Lessios, 2011). This pattern is thought to
be due to assortative mating and sexual conflict (Lessios, 2011).

In broadcast-spawning invertebrates, only a minority of
sister-species pairs that were tested show complete gametic
incompatibility in the laboratory (e.g. Rahman, Uehara &
Pearse, 2001; McClary & Sewell, 2002; Willis et al., 2006;
Lessios, 2007). In many cases, pairs show partial incompati-
bility, where sperm of one species cannot fertilize eggs of
the other, but the reverse is unimpeded. Hybrids are less
common in nature than expected by laboratory crosses,
implicating other prezygotic barriers (Wei et al., 2012). Alter-
natively, divergent selection against intermediate, hybrid
phenotypes may serve as a postzygotic barrier between sym-
patric, ecologically isolated species whose gametes may easily
meet (Rahman et al., 2001; McClary & Sewell, 2002; Willis
et al., 2006; Carlon et al., 2011). In addition, hybrid speciation
is known in cnidarians (in Alcyonium soft corals), in which
hybrids become reproductively isolated from both parent
species (McFadden & Hutchinson, 2004).

(4) Vertebrate speciation

(a) Geographic modes in vertebrates

To estimate the relative frequency of allopatry versus sym-
patry in vertebrates, we focused on studies performing
ARC analyses (Appendix S1). These studies identify sister-
species pairs and quantify their geographic overlap.

We collected data for 1627 sister-species pairs from13 stud-
ies, including mammals, birds, squamates, turtles, amphib-
ians, and ray-finned fishes. Of these, 855 pairs (52.6%) were
completely allopatric, 601 pairs (36.9%) were partially sym-
patric, and 171 (10.5%) were fully sympatric (Table 7). Nota-
bly, our sample size (1627 pairs) is more than five times that of
a similar review (Bolnick & Fitzpatrick, 2007), yet our results

Table 7. Summary of estimated geographic modes of speciation among vertebrates. Allopatric pairs had 0% range overlap, partially
sympatric pairs had 1–99% overlap, and sympatric pairs had 100% overlap (species with smaller range size fully overlapping the
range of the species with larger range size). We excluded pairs labeled as ‘parapatric’ because these were difficult to distinguish from
allopatry across all studies. When the same pair was included in more than one previous study, we only included information from the
most recent study (no pairs were counted twice). We excluded pairs from Barraclough & Vogler (2000) because we could not
distinguish between sister-species pairs and internal nodes based on their data

Group
Sister
species
pairs

Allopatric
pairs

Partially
sympatric
pairs

Sympatric
pairs

References

Mammals 170 98 (57.6%) 65 (38.2%) 7 (4.1%) Fitzpatrick & Turelli (2006); Skeels & Cardillo (2019)
Birds 685 365 (53.3%) 310 (45.3%) 10 (1.5%) Lynch (1989); Chesser & Zink (1994); Phillimore

et al. (2008); Skeels & Cardillo (2019)
Amphibians 190 106 (55.8%) 60 (31.6%) 24 (12.6%) Kozak & Wiens (2006); Hua & Wiens (2010); Wollenberg

et al. (2011); Skeels & Cardillo (2019)
Squamates 323 179 (55.4%) 79 (24.5%) 65 (20.1%) Jezkova & Wiens (2018); Skeels & Cardillo (2019)
Turtles 10 9 (90.0%) 1 (10.0%) 0 Stephens & Wiens (2003)
Ray-finned fishes

rivers 166 83 (50.0%) 61 (36.7%) 22 (13.3%) E.C. Miller (in preparation)
lakes 22 1 (4.5%) 0 21 (95.5%) E.C. Miller (in preparation)
marine 61 14 (23.0%) 25 (41.0%) 22 (36.1%) Quenouille et al. (2011); Hodge et al. (2013); Skeels &

Cardillo (2019)
Total 1627 855 (52.6%) 601 (36.9%) 171 (10.5%)
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are broadly congruent. They counted 309 pairs across ani-
mals (mostly vertebrates) and found only ~9% had >90%
range overlap, compared to ~72% with no overlap. Overall,
our results suggest that allopatric speciation may be the dom-
inant mode among vertebrates, whereas sympatric speciation
appears to be much less common.

Results within each vertebrate subgroup also suggest that
allopatry may be the dominant mode (Table 7). However,
lacustrine and marine fishes seem to be an exception. Almost
all lacustrine pairs in our sample were sympatric (95.5%; N
= 21). All of these pairs were from the family Cichlidae (E.C.
Miller, in preparation). Some of the best-supported cases of
sympatric speciation in general come from lacustrine fishes,
especially cichlids (Seehausen & Wagner, 2014). Among
marine fishes, 36% of pairs were fully sympatric, compared
to 23% that were allopatric. The prevalence of marine sister-
species pairs with large, overlapping ranges and few obvious
barriers to gene flow implies that sympatric speciation may
be common (Puebla, 2009; Bowen et al., 2013). Most evidence
for sympatric speciation in marine fishes comes from studies of
incipient species (e.g. Crow, Munehara & Bernardi, 2010).

Two studies using ARC for marine fishes found contrast-
ing results. Quenouille et al. (2011) examined wrasses and
damselfishes (N = 18 sister-species pairs). They found that
all sister-species pairs younger than 4 million years were allo-
patric (seven pairs; 38.9%), but all older pairs were sympatric
(11 pairs; 61.1%), implying that the ranges of these older
pairs overlapped because of range shifts after allopatric speci-
ation. By contrast, sympatry was dominant within angel-
fishes, with no correlation between range overlap and time
(N = 5 sister-species pairs; Hodge et al., 2013).

(b) Ecological divergence in vertebrates

Studies inmany vertebrate groups often find that sister species
are ecologically differentiated (e.g. Graham et al., 2004; Funk,
Nosil & Etges, 2006; Warren, Glor & Turrelli, 2008). Many
well-known cases of ecological speciation in vertebrates
involve divergence in diet and/or microhabitat. In granivo-
rous birds, reproductive isolation may be maintained by
lower fitness of hybrids with intermediate bill phenotypes
(Svensson, 2012). Concurrent divergence in depth and diet
is known in freshwater and marine fishes including cichlids,
sticklebacks, Arctic char, and rockfish (e.g. Streelman &
Danley, 2003; Puebla, 2009; Ingram, 2011; Seehausen &
Wagner, 2014).

Many studies have compared climatic data in sister-species
pairs, to evaluate if their splitting is potentially explained by
climatic-niche divergence or climatic-niche conservatism
(i.e. allopatric pairs split by a barrier of climatically unsuita-
ble habitat). For example, Jezkova &Wiens (2018) supported
a potential role for climatic-niche divergence in allopatric
speciation in ~80% of 49 species pairs of squamate reptiles
(lizards and snakes), with niche conservatism supported in
the other ~20%. Kozak & Wiens (2006) supported niche
conservatism in six out of eight allopatric pairs in salaman-
ders. Thus, both processes can potentially influence

speciation in land vertebrates, and the relative importance
of each process may vary from group to group.
Macroevolutionary studies also suggest that climatic-niche

divergence may drive speciation in many vertebrate groups,
based on increased diversification rates in clades with faster
rates of climatic-niche divergence. These include analyses
in salamanders (Kozak & Wiens, 2010), frogs (Moen &
Wiens, 2017), birds (Cooney, Seddon & Tobias, 2016), and
mammals (Castro-Insua et al., 2018). Climatic-niche diver-
gence rates can explain substantial variation in diversification
rates among clades in these groups (e.g. salamanders = 41%;
frogs = 25%; mammals = 51%). Thus, climatic-niche diver-
gence appears to be important in all major groups of land
vertebrates. Nevertheless, more work is needed on the spe-
cific processes by which climatic-niche divergence among
populations drives speciation and diversification, including
within-species patterns of climatic-niche and genetic diver-
gence (e.g. Wang, Glor & Losos, 2013).
The importance of climatic-niche divergence relative to

other potential ecological and non-ecological drivers of speci-
ation also remains uncertain. A study in frogs (Moen &
Wiens, 2017) found that variation in diversification rates
among families was explained by a combination of arboreal
microhabitat, rates of climatic-niche evolution, and occur-
rence in warmer climates, with the first two traits explaining
much more variation than the third. Arboreal microhabitat
was also important for diversification among squamate fam-
ilies (Bars-Closel et al., 2017), more so than climatic distribu-
tion. However, the nature of the connection between this
microhabitat and speciation remains uncertain.
Overall, there are dozens (if not hundreds) of studies on how

ecological divergence is related to speciation in vertebrates. We
suggest that future studies should attempt to address the relative
impacts of multiple ecological variables (e.g. diet, microhabitat,
climate) on large-scale patterns of diversification and speciation.
These can then be coupled with sister-species comparisons of
divergence in the same ecological variables, and within-species
analyses relating reproductive isolation and/or genetic diver-
gence to divergence in these same traits.

(c) Reproductive isolating barriers in vertebrates

Isolating barriers have been extensively studied in verte-
brates, so we provide only a brief summary here. In animals
in general, prezygotic barriers are widely believed to be more
important for speciation than postzygotic barriers (Ritchie,
2007; Butlin et al., 2012; Seehausen & Wagner, 2014).This
inference is often based on the observation that many closely
species are isolated by prezygotic barriers but lack postzygo-
tic barriers. The best-known examples of prezygotic isolating
barriers in vertebrates involve ecological differences and
behavioural differences between species. In addition to these
barriers, mechanical isolation is also known, such as body-
size differences that prevent copulation (e.g. Richmond,
Jockusch & Latimer, 2011).
Behavioural pre-mating isolation barriers are well studied

in birds, and some barriers may be specific to them among

Biological Reviews (2021) 000–000 © 2021 Cambridge Philosophical Society.

18 Tania Hernández-Hernández et al.



vertebrates. Imprinting on parental phenotypes may be an
important factor underlying assortative mating in birds
(Randler, 2008; Uy, Irwin &Webster, 2017). Assortativemat-
ing for species-specific songs is another hypothesized barrier
(Edwards et al., 2005; Uy et al., 2017). In support of this
hypothesis, bursts of song divergence and speciation rate
increases coincide in some bird radiations (Mason et al., 2017).

Species-specific frog calls are also thought to be important
for speciation, based particularly on species-level compari-
sons (e.g. Hoskin et al., 2005; Boul et al., 2007). However,
despite these patterns in birds and frogs, analyses across tetra-
pods suggest that the presence of acoustic communication in
a clade does not increase its diversification rates (Chen &
Wiens, 2020).

Intersexual signals that facilitate assortative mating
between species are generally thought to be important pre-
mating isolating barriers in vertebrates (Streelman &
Danley, 2003; Edwards et al., 2005; Maan & Seehausen,
2011; Martin & Mendelson, 2015; Uy et al., 2017). Species-
specific visual signals are thought to aid the speciation process
and thus explain the high species richness of many groups
(Streelman & Danley, 2003). For example, in African cich-
lids, interspecific hybridization became more common after
eutrophication blurred male colour differences (Seehausen,
van Alphen & Witte, 1997). However, species-specific visual
signals might instead be more important for maintaining
reproductive isolation than initiating it. Non-visual sexual
signals, such as chemosensory signals, may also help maintain
species boundaries in many rodents, squamates, and fishes
(Smadja & Butlin, 2009).

Post-mating, prezygotic barriers (including cryptic female
choice) are known in vertebrates, but their relative frequency
is unclear (Birkhead & Brillard, 2007; Randler, 2008). Evi-
dence for these barriers is perhaps best known in birds, which
sometimes have complex female reproductive tracts
(Edwards et al., 2005; Birkhead & Brillard, 2007).

The relationship between genetic divergence and hybrid
viability has been examined for many vertebrate groups
[mammals, birds (Zeh & Zeh, 2000); lizards (Jančúchová-
Lásková, Landová & Frynta, 2015); amphibians (Zeh &
Zeh, 2000; Malone & Fontenot, 2008); fishes (Bolnick &
Near, 2005; Coleman, Harlin-Cognato & Jones, 2009; Stelk-
ens, Young & Seehausen, 2009; Martin & Mendelson, 2015,
2018)]. The rate of formation of postzygotic barriers differs
among vertebrate groups. Mammals form these barriers
more quickly than other vertebrates (<10 million years;
Zeh & Zeh, 2000). By contrast, hybrids have been reported
between species separated by >20 million years in all other
major vertebrate groups, even up to 100 million years
(Jančúchová-Lásková et al., 2015). The faster rate of postzy-
gotic isolation in mammals may be linked to parity. Mam-
mals are almost exclusively viviparous, whereas other
vertebrate groups are predominately oviparous (Zeh &
Zeh, 2000). Furthermore, viviparous fishes appear to form
postzygotic barriers faster than oviparous fishes (Coleman
et al., 2009). This pattern is thought to be explained by the
greater potential for genomic conflict between mother and

offspring in viviparous taxa. Haldane’s rule might also be
related to differences in the speed of achieving reproductive
isolation. Haldane’s rule states that when interspecific
hybridization results in sterile offspring for only one sex, it
will be the heterogametic sex that is sterile. For example,
birds that have heterogametic females (Edwards et al., 2005)
may evolve reproductive isolation faster than some fishes that
lack distinct sex chromosomes (Bolnick & Near, 2005; Mar-
tin & Mendelson, 2018).

VII. MAJORGENERALIZATIONSANDPATTERNS

The goal of this paper is to compare aspects of speciation
across the major groups of living organisms, focusing espe-
cially on geographic modes, ecological speciation, and isolat-
ing barriers. We also address the frequencies of co-speciation
and host-switching. In the preceding sections, we described
these aspects in each major group. Here, we make our com-
parisons across groups for each of these aspects of speciation,
starting with co-speciation and host-switching. We also com-
pare diversification rates across groups.

(1) Co-speciation and host-switching

Co-speciation and host-switching are not generally consid-
ered fundamental processes in speciation. As one example,
these processes are barely mentioned in a classic monograph
on speciation (Coyne & Orr, 2004), and did not earn a chap-
ter or section heading.

Based on our results (and on projected species numbers),
co-speciation may actually be one of the most numerically
important speciation processes (Fig. 1). Our review suggests
that endosymbiotic bacteria frequently undergo co-
speciation with their insect hosts (~79% of speciation events;
Table 1). A recent review (and Section II.2) suggested that
each insect species may host around eight unique bacterial
endosymbionts, and that most (~70%) species on Earth
may be endosymbiotic bacteria (Larsen et al., 2017). Thus,
the majority of speciation events on Earth may have involved
co-speciation of bacteria and their hosts.

Co-speciation is also widespread in protists and fungi but
the relative frequencies of co-speciation and host-switching
may be more equal in these groups (Fig. 1). Based on their
species-specificity in insect hosts (review in Larsen et al.,
2017), the most species-rich groups of protists and fungi
may be apicomplexans and microsporidians, respectively.
Both co-speciation and host-switching appear to be wide-
spread in apicomplexans, but their frequencies in insect-
associated taxa are unclear. Studies of co-speciation and
host-switching in insect-associated microsporidians suggest
that both processes are present (Shafer et al., 2009; Andreadis
et al., 2012). There may also be multiple microsporidian spe-
ciation events within a single insect host species (Andreadis
et al., 2012). Quantifying the relative frequency of co-
speciation and host-switching in these two clades should be
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a high priority for understanding speciation generally in pro-
tists and fungi.

Animals that are associated with insect hosts may also be
critically important for understanding overall patterns of spe-
ciation. For example, mite and nematode species may often
be associated with a single insect host species, and a single
insect species may harbour many mite and nematode species
(review in Larsen et al., 2017). Thus, each of these groups may
be as (or more) species-rich than insects. Addressing co-
speciation and host-switching in insect-associated mites and
nematodes may be particularly crucial for estimating the
most numerically important speciation processes across
animals.

Finally, the exceptional diversity of insects may be associ-
ated (at least in part) with interactions with plant hosts.
Host-switching may be the key process in this case. We
address this below in Section VII.3.

(2) Geographic modes of speciation

Our survey suggests that allopatric speciation might be the
most common geographic mode of speciation across the Tree
of Life (Fig. 2), based on patterns of range overlap of sister
species (see below). However, our review also suggests that
there are a few groups in which sympatric speciation might

be as or more common (Fig. 2). For bacteria, there are some
potential examples of allopatric speciation, but we caution
that insufficient information was available to infer overall fre-
quencies. Similarly, for protists, we have only two relevant
species pairs (both allopatric). For fungi, sympatric pairs were
slightly more common than allopatric pairs (26 versus 24%)
and parapatric pairs were also frequent (16%). Interestingly,
most sampled pairs were non-specialist pathogens. Allopatric
pairs were far more common than sympatric pairs in
mushroom-forming Basidomycota (62 versus 12%; N = 8;
Table S1). In plants, allopatry was most common (30%) but
sympatry was similar in frequency (18%), and most species
pairs were partially sympatric (52%). Allopatry was clearly
more common in animals. Allopatric pairs were most com-
mon in molluscs (78%), insects (59%), other marine inverte-
brates (68%), and vertebrates (53%). However, there were
also groups of animals in which sympatric pairs were as or
more common than allopatric pairs, including lacustrine
(96%) and marine fishes (36%).
Another way to look at the results is in terms of the fre-

quency of fully sympatric sister-species pairs (Fig. 2). We esti-
mated these values for fungi (26%), plants (18%), and various
animal groups, including molluscs (15%), insects (23%),
marine invertebrates (24%), and vertebrates (10%). Overall,
despite the idea that sympatric speciation is more common in
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Fig. 2. Relative frequencies of geographic modes of speciation among fungi, plants, and major animal groups. Frequencies are
estimated from range overlap of sister-species pairs, which is essential for estimating geographic modes of speciation (Skeels &
Cardillo, 2019). Sample size is the number of species pairs for each group. Note that parapatry is treated as partial sympatry in
some groups (e.g. plants, vertebrates).
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plants than in animals (Stebbins, 1950; Grant, 1981), the fre-
quencies of sympatric species pairs were broadly overlapping
between these two groups. Thus, plants had fewer allopatric
pairs relative to animals, but similar frequencies of fully sym-
patric pairs. One potential explanation for this pattern is that
allopatric speciation predominates in both groups, but post-
speciation dispersal is more common in plants. However,
analyses of range overlap over time show negative relation-
ships in plants (Anacker & Strauss, 2014), not the positive
relationship expected given allopatry and dispersal.

Another question is whether frequencies of allopatric and
sympatric species pairs differ among habitats (i.e. terrestrial,
marine, freshwater). This question may be crucial for
explaining high marine species richness despite few barriers
to dispersal (Bowen et al., 2013), and high freshwater diversity
given the limited volume of fresh water (E.C. Miller, in prep-
aration). We focus on molluscs, other (mostly) marine inver-
tebrate phyla, and vertebrates for this comparison, given
the few marine plants or fungi (and limited data for protists
and bacteria). In molluscs, the frequencies of allopatric versus
sympatric pairs are broadly similar among marine, freshwa-
ter, and terrestrial habitats (76, 73, and 85% allopatric versus
15, 20, and 12% sympatric, respectively). For vertebrates,
frequencies were ~53% allopatric versus ~11% sympatric,
dominated by terrestrial species. Allopatry was also domi-
nant among riverine fishes (50 versus 13% in sympatry). By
contrast, almost all lacustrine fish pairs were sympatric
(96%) and marine fish had a higher frequency of sympatric
pairs than allopatric pairs (36 versus 23%; Table 7). Marine
invertebrates (excluding molluscs and arthropods) were sim-
ilar to terrestrial groups (68% allopatric, 24% sympatric),
but with a higher frequency of sympatry, especially in some
cnidarians (34% sympatric overall, with 41% in anthozoans
and 67% in myxozoans). Among secondarily freshwater line-
ages of Porifera and Cnidaria (Table 6), geographic patterns
were similar to their marine relatives (59% allopatric, 29%
sympatric). In insects (mostly terrestrial), fully sympatric sister
pairs based on current range overlap were not rare (23%;
Table 4), but analyses of overlap over time suggest that this
pattern might arise from range shifts (85% allopatry) not
sympatric speciation (ARC estimate of sympatry = 14%).
Overall, these results do not show strong differences between
terrestrial, marine and freshwater habitats, but some groups
might have high frequencies of sympatric speciation (e.g.
marine and lacustrine fishes). Future studies should use phy-
logenies to test whether there is a higher frequency of second-
ary sympatry in the ocean, where barriers to dispersal seem
limited.

In summary, our results from range-overlap data suggest
that allopatry might be the most common geographic mode
across most taxa and habitats (but note that frequencies are
unclear for bacteria and protists). At the same time, most
groups show a non-trivial number of fully sympatric pairs
(10% or higher), and these may outnumber allopatric pairs
in fungi and some marine clades. Although these sympatric
pairs will require more evidence to establish whether they
originated through sympatric speciation, our results are

potentially consistent with the idea that sympatric speciation
might explain many speciation events in most groups (despite
generally being in the minority).

Finally, we emphasize that all of these inferences are based
primarily on range overlap of sister species. This approach has
the potential to be accurate, based on simulations (Skeels &
Cardillo, 2019), but accuracy is not guaranteed for any given
species pair. We emphasize again that sympatric pairs may
require additional evidence to support sympatric speciation.
At the same time, we are skeptical of the idea thatmost allopat-
ric sister pairs with currently non-overlapping ranges actually
originated in parapatry or sympatry.

(3) Ecological divergence and speciation

Our review suggests that ecological divergence (and possibly
speciation) is widespread across the Tree of Life.We found that
themost predominant types of ecological divergence fall largely
into two main categories: species interactions and abiotic hab-
itat divergence. As described above, species interactions may
be critically important for the majority of speciation events
across the Tree of Life. First, most living species (~70%) may
be endosymbiotic bacteria, and co-speciation between these
bacteria and their hosts appears to drive the majority of speci-
ation events in bacteria (~79%; Table 1, Fig. 1). These co-
speciation events clearly involve species interactions, but not
necessarily ecological divergence. Host-switching is also wide-
spread in endosymbiotic bacteria. Protists and fungi also
include many parasitic and symbiotic taxa (especially consider-
ing projected species numbers). In these groups, both co-
speciation and host-switching appear to drive speciation,
possibly at similar frequencies (Fig. 1).

Most living described species are animals, and most of these
are insects (~62%; Scholl &Wiens, 2016). Our review suggests
that ecological divergence is common among sister species of
insects (~80% of 111 pairs) and many of these cases (74% of
65) involved host-plant shifts in herbivorous insects. Intrigu-
ingly, these host shifts were more common in allopatric pairs
than sympatric pairs (87% versus 58%). There is alsomacroevo-
lutionary evidence that herbivory drives increased diversifica-
tion rates in insects (e.g. Mitter, Farrell & Wiegmann, 1988;
Wiens et al., 2015).

Two-thirds or more of projected animal diversity may
consist of mites and nematodes associated with insect hosts
(Larsen et al., 2017), and studies are needed to assess whether
their speciation typically involves co-speciation, host shifts, or
other processes. The role of species interactions in speciation
in other animal groups (e.g. vertebrates, molluscs) may be
more limited, despite some well-known examples (e.g. diet
in birds).

Ecological speciation through species interactions might
also be important in plants. Pollinator shifts are considered
to be a major driver of ecological speciation in angiosperms
(Givnish, 2010), which make up ~90% of land-plant species.
There is also macroevolutionary evidence that biotic pollina-
tion drove rapid angiosperm diversification (e.g. Hernández-
Hernández & Wiens, 2020), but similar studies are needed
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for pollinator shifts. Moreover, the actual frequency with
which pollinator shifts lead to new species (relative to other
processes) remains uncertain. Analyses in Cape Region
plants suggest that pollinator divergence is roughly as com-
mon as habitat divergence (van der Niet & Johnson, 2009),
but whether divergence in these traits actually drives specia-
tion remains uncertain.

Divergence in abiotic habitat may be a second major
driver of ecological speciation across the Tree of Life, based
on divergence between sister species. However, the relevant
aspects of habitat differ across groups. In bacteria, different
soil types may be important. In marine protists, divergence
in salinity, oxygen content, pH, and nutrients might all drive
ecological speciation. In fungi, temperature may be particu-
larly relevant. Quantitative analyses show that habitat diver-
gence is frequent in plants. Similarly, marine invertebrates
show habitat divergence that is possibly associated with eco-
logical speciation, including depth and temperature. In ter-
restrial vertebrates, divergence in climatic niches has been
shown to be significant in every major group, based on
climatic-niche divergence between sister species and/or cor-
relations between rates of climatic-niche change and diversi-
fication (speciation minus extinction).

Finally, our review provides some potential insights on
how common ecological speciation may be. For example,
two studies in plants spanning hundreds of species suggest
that ecological divergence is associated with speciation in
about 65–80% of speciation events. In insects, our review
suggests the presence of ecological divergence in 80% of
111 species pairs. In molluscs, ecological divergence was
reported in 62% of sampled marine pairs and 30% of fresh-
water pairs. In vertebrates, analyses in squamates suggest
that climatic-niche divergence accompanies allopatric speci-
ation in 80% of species. Overall, these patterns suggest that
ecological divergence might help explain many speciation
events in both plants and animals. This might also be true
in free-living bacteria, fungi, and protists, but quantitative
analyses are generally lacking.

Nevertheless, a crucial caveat here is that many of these
inferences are based on reported ecological differences
between sister species. Therefore, it is possible that these eco-
logical differences did not actually drive speciation. Thus, the
frequency of ecological speciation may be overestimated. At
the same time, it is difficult to conclude that species pairs
completely lack ecological differences, unless all possible
niche axes have been examined. Thus, ecological speciation
could also be underestimated from this approach.

It is also important to note that ecological divergence
between sister species is not universal or inevitable. For
example, a study in squamate reptiles (Jezkova & Wiens,
2018) suggested that climatic niche conservatism drives allo-
patric splitting in ~20% of the sampled species pairs, based
on analyses showing the separation of allopatric species pairs
by a barrier of climatically unsuitable habitat. Similarly, we
found possible non-ecological speciation in 20% of 111 sister
pairs of insects, most commonly in allopatric pairs. We found
no reported evidence for ecological divergence in most

(~75%) species pairs of freshwater molluscs, which aremostly
allopatric. Moreover, it is not inevitable that macroevolu-
tionary studies find significant relationships between diversi-
fication rates and rates of climatic niche change, or other
ecological variables thought to drive speciation based on
divergence between sister species.
The strongest evidence for ecological speciation may come

from combining these inferences from species pairs with intra-
specific results (e.g. strong genetic divergence among individ-
uals in different habitats) and macroevolutionary patterns
(e.g. increased diversification rates associated with increased
rates of climatic-niche divergence). Another crucial approach
is to test directly for positive correlations between reproductive
isolation and ecological divergence among species. For exam-
ple, Funk et al. (2006) found that reproductive isolation was sig-
nificantly related to habitat divergence among eight clades of
animals and plants. Similar patterns (but using genetic diver-
gence) were found in bacteria (Vos, 2011).
Along these lines, we emphasize several areas of agree-

ment among different approaches to ecological speciation.
For plants, 33% of the 188 sampled species pairs from the
Cape Region were found to differ in pollinator types (van
der Niet & Johnson, 2009). In macroevolutionary studies
across land plants, biotic pollination was the most important
driver of increased diversification rates (Hernández-Hernán-
dez &Wiens, 2020). Plant sister-species pairs also often occur
in different habitats (van der Niet & Johnson, 2009; Ana-
cker & Strauss, 2014), which can differ in climate. Congru-
ently, faster rates of climatic-niche evolution appear to
drive faster diversification rates in at least some plant groups
(Schnitzler et al., 2012). In insects, we found that among the
111 species pairs with relevant data, ecological divergence
was supported in 89 pairs (80%) and many of these (48 pairs)
involved host shifts in herbivorous species. At the within-
species level, Forbes et al. (2017) found widespread evidence
for host-associated genetic structure in herbivorous insects.
At the macroevolutionary level, the presence of herbivory
also explains ~30% of the variation in diversification rates
among insect orders (Wiens et al., 2015), and host shifts
appear to help drive diversification within herbivorous insect
clades (Hardy & Otto, 2014). In land vertebrates, both com-
parisons of sister species and macroevolutionary studies are
consistent with the idea that climatic-niche divergence may
often drive speciation. However, more large-scale surveys
are also needed to address how often within-species genetic
isolation is driven by climatic divergence and not by geo-
graphic distance (e.g. Wang et al., 2013). In summary, these
patterns of congruence suggest that the observed ecological
differences between species pairs in these traits in these
groups may be important in driving speciation, and are not
simply differences that arise after speciation caused by other
factors.

(4) Reproductive isolating barriers

Making comparisons and generalizations about the evolution
of isolating barriers was especially difficult. Information was
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often patchy, and not standardized among groups. Neverthe-
less, some interesting observations do emerge.

First, as described above, ecological divergence between
species appears to be widespread across the Tree of Life. This
appears to be true in bacteria, protists, fungi, plants, and
most animal groups. In many cases, this can be considered
pre-mating and prezygotic, since individuals in different hab-
itats (or hosts) may never meet.

Second, prezygotic isolation generally seems to be more
important than postzygotic isolation across the Tree of Life.
For example, in plants, pre-pollination barriers seem typi-
cally to contribute more to reproductive isolation than post-
zygotic barriers (Lowry et al., 2008; Baack et al., 2015). In
insects, most of the species surveyed have both prezygotic
and postzygotic isolation (79% of 53 pairs), whereas 21%
have prezygotic but not postzygotic isolation. This pattern
suggests that prezygotic isolation evolves first (Coyne &
Orr, 1989, 1997). In vertebrates, prezygotic barriers are
believed to be more important than postzygotic barriers.
Furthermore, postzygotic barriers appear to form relatively
slowly in vertebrates, much slower than the rate of species
formation (e.g. Stelkens et al., 2009). In marine invertebrates,
many species use broadcast spawning and species are isolated
prezygotically by the timing of gamete release and by
gametic incompatibility. Gametic incompatibility appears
to be widespread in protists. In fungi, strong pre-mating iso-
lation is present in some groups, although the relationship to
postzygotic isolation is unclear. Bacteria do not form gametes
(or zygotes), but recombination between species is only possi-
ble between similar sequences. Nevertheless, postzygotic iso-
lation is also present in many groups, including animals and
plants.

Third, hybrid and polyploid speciation are widespread
across the Tree of Life (if not necessarily common). For
example, hybrid speciation is hypothesized in fungi, plants,
and some animals (e.g. cnidarians). However, detecting
hybrid speciation is controversial (e.g. Schumer, Rosenthal &
Andolfatto, 2014; Feliner et al., 2017), and this debate
impacts how common this process is inferred to
be. Speciation through polyploidy occurs in many protist
taxa and may account for ~15% of speciation events in
plants. Polyploid speciation is generally considered to be rare
in animals, and this difference with plants is a subject of con-
siderable debate (Coyne & Orr, 2004).

(5) Rates of diversification and speciation

One quantitative aspect of speciation that has been com-
pared across groups is the rate (e.g. Coyne & Orr, 2004).
The rate of diversification (speciation minus extinction) is rel-
atively straightforward to estimate with only the ages of
clades and their richness. However, extracting a speciation
rate from this information is challenging. Here, we assume
that variation in diversification rates is positively related to
variation in speciation rates (as is widely done; Coyne &
Orr, 2004). We briefly review a set of diversification rate esti-
mates for the major groups addressed herein, in which all

estimates should be directly comparable (the only such set
of estimates we are aware of). These estimates (from Scholl &
Wiens, 2016) were all based on the method-of-moments esti-
mator for stem groups (Magallón & Sanderson, 2001), using
an intermediate epsilon value (0.5; alternative values have
limited impact on relative rates among groups). Simulations
show that this estimator is relatively accurate, and can be
robust to variation in rates within clades over time and
between subclades (Meyer, Román-Palacios & Wiens,
2018) and to faster rates in younger clades (Kozak &
Wiens, 2016). It is also straightforward to examine the impact
of changing species numbers within clades using this
approach.

Among major clades, land plants have relatively rapid
diversification rates [0.0278 species per million years (Myr)]
relative to animals (0.0141) and fungi (0.0085). The high rate
in plants is almost certainly driven by angiosperms (which
contain 90% of land plants, rate = 0.0332). Major clades of
protists are slower (e.g. Amoebozoa = 0.0040; Excavata =
0.0034; SAR clade = 0.0062). The slowest rates are in bacte-
ria (0.0020) and archaeans (0.0014).

These estimates are based on numbers of described spe-
cies. If projected bacterial richness is used (e.g. ~1 billion spe-
cies; Larsen et al., 2017), the rate is higher, but similar in
magnitude (0.0048). Projections of bacterial richness that
are ten times lower or higher than 1 billion yield similar rate
estimates (0.0042, 0.0054). These rate estimates are low
because bacteria are extremely old. Similarly, assuming high
species richness for animals (163 million; Larsen et al., 2017)
yields a similar rate (0.0190). Of course, there is important
variation within these major clades. However, rates for sub-
clades do tend to be correlated with those of their major
clades (Scholl & Wiens, 2016).

Overall, there seem to be striking differences in speciation
rates across the Tree of Life (based on variation in diversifica-
tion rates). A major challenge for future studies is to deter-
mine whether these differences in rates are related to
differences in processes of speciation. Intriguingly, our review
does not suggest any obvious differences that would explain
the variation in rates. There is a large literature linking vari-
ation in diversification rates to specific traits (review inWiens,
2017), such as herbivory in insects (e.g. Mitter et al., 1988;
Wiens et al., 2015), biotic pollination in plants (e.g. Bruun-
Lund et al., 2018; Hernández-Hernández & Wiens, 2020),
and climatic-niche change and microhabitat in vertebrates
(see Section VII.3). Nevertheless, we do have some examples
where it is possible to link these large-scale relationships to
patterns at the species level (e.g. insect herbivory, angiosperm
pollination, vertebrate climatic niches).

VIII. CONCLUSIONS

(1) Synthetic studies of speciation tend to focus on partic-
ular topics or particular taxa. Here we attempted to
look for differences and generalities in speciation
among major groups across the Tree of Life.
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(2) The most numerically frequent speciation process
across the Tree of Life may be co-speciation between
endosymbiotic bacteria and their insect hosts, given
estimates that ~70% of projected species may be
host-associated bacteria and given our estimate that
~79% of sampled nodes show a pattern consistent with
co-speciation. We also suggest that recent claims of
very limited bacterial diversity associated with animal
hosts are almost certainly incorrect.

(3) Allopatric speciation (inferred from allopatry of sister spe-
cies) seems to be present in all major groups, and may be
the most frequent mode in both animals and plants. Full
sympatry of sister species is also widespread (consistent
with sympatric speciation), and appears to be more fre-
quent in fungi than allopatry. Sympatric sister species
are more common in some marine animal groups (e.g.
some cnidarians, fishes) and in lacustrine fishes than in
terrestrial, freshwater, or marine animals in general.

(4) Ecological divergence (essential for ecological speciation) is
widespread in all groups, including ~70% of species pairs
of plants and insects surveyedhere.Across theTreeofLife,
ecologicaldivergence typically involveseither species inter-
actions (e.g. host-switching) or habitat divergence. More
work is needed to confirm that these cases of ecological
divergence between sister species do indeed represent eco-
logical speciation. Nevertheless, inferences from species
pairs are supported by macroevolutionary analyses of
diversificationrates forsomekeyecological traits (e.g. insect
herbivory, plant pollination, climatic niche divergence).

(5) Prezygotic isolation may be generally more widespread
and important than postzygotic isolation. For example,
postzygotic isolation seems to lag behind speciation in
insects and vertebrates, although not in plants. However,
many speciesare isolatedbybothprezygoticandpostzygo-
ticbarriers (e.g. in insectsandplants).Ecologicaldivergence
and gametic incompatibility are widespread prezygotic
barriers in many groups, with gametic incompatibility
documented in protists, insects, andmarine invertebrates,
and ecological divergence in almost all groups.

(6) Rates of diversification (and presumably speciation)
are strikingly different among major clades across the
Tree of Life, with rates in plants twice as fast as those
in animals, more rapid rates in animals than in fungi,
and the slowest rates in protists and prokaryotes.
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